Last updated at Dec. 16, 2024 by Teachoo
Ex 10.2, 10 Find a vector in the direction of vector 5π Μ β π Μ + 2π Μ which has magnitude 8 units.π β = 5π Μ β π Μ + 2π Μ = 5π Μ β 1π Μ + 2π Μ Magnitude of π β = β(52+(β1)2+22) |π β | = β(25+1+4) = β30 Unit vector in direction of π β = 1/|π β | . π β π Μ = 1/β30 . [5π Μβ1π Μ+2π Μ ] π Μ = 5/β30 π Μ β 1/β30 π Μ + 2/β30 π Μ Thus, unit vector π Μ = 5/β30 π Μ β 1/β30 π Μ + 2/β30 π Μ Vector with magnitude 1 = 5/β30 π Μ β 1/β30 π Μ + 2/β30 π Μ Vector with magnitude 8 = 8 [5/β30 π Μ" β " 1/β30 π Μ" + " 2/β30 π Μ ] = ππ/βππ π Μ β π/βππ π Μ + ππ/βππ π Μ Hence, the required vector is 40/β30 π Μ β 8/β30 π Μ + 16/β30 π Μ
Ex 10.2
Ex 10.2, 2
Ex 10.2, 3 Important
Ex 10.2, 4
Ex 10.2, 5 Important
Ex 10.2, 6
Ex 10.2, 7 Important
Ex 10.2, 8
Ex 10.2, 9
Ex 10.2, 10 Important You are here
Ex 10.2, 11 Important
Ex 10.2, 12
Ex 10.2, 13 Important
Ex 10.2, 14
Ex 10.2, 15 Important
Ex 10.2, 16
Ex 10.2, 17 Important
Ex 10.2, 18 (MCQ) Important
Ex 10.2, 19 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo