Check sibling questions


Transcript

Ex 10.2, 9 For given vectors, ๐‘Ž โƒ— = 2๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ + 2๐‘˜ ฬ‚ and ๐‘ โƒ— = โˆ’๐‘– ฬ‚ + ๐‘— ฬ‚ โˆ’ ๐‘˜ ฬ‚ , find the unit vector in the direction of the vector ๐‘Ž โƒ— + ๐‘ โƒ—๐‘Ž โƒ— = 2๐‘– ฬ‚ โˆ’ j ฬ‚ + 2๐‘˜ ฬ‚ = 2๐‘– ฬ‚ โ€“ 1๐‘— ฬ‚ + 2๐‘˜ ฬ‚ ๐‘ โƒ— = โˆ’๐‘– ฬ‚ + ๐‘— ฬ‚ โ€“ ๐‘˜ ฬ‚ = โˆ’1๐‘– ฬ‚ + 1๐‘— ฬ‚ โ€“ 1๐‘˜ ฬ‚ Now, (๐‘Ž โƒ— + ๐‘ โƒ—) = (2 โ€“ 1) ๐‘– ฬ‚ + (-1 + 1) ๐‘— ฬ‚ + (2 โ€“ 1) ๐‘˜ ฬ‚ = 1๐‘– ฬ‚ + 0๐‘— ฬ‚ + 1๐‘˜ ฬ‚ Let ๐‘ โƒ— = ๐‘Ž โƒ— + ๐‘ โƒ— โˆด c โƒ— = 1๐‘– ฬ‚ + 0๐‘— ฬ‚ + 1๐‘˜ ฬ‚ Magnitude of ๐‘ โƒ— = โˆš(12+02+12) |๐‘ โƒ— | = โˆš(1+0+1) = โˆš2 Unit vector in direction of ๐‘ โƒ— = 1/|๐‘ โƒ— | . ๐‘ โƒ— ๐‘ ฬ‚ = 1/โˆš2 [1๐‘– ฬ‚+0๐‘— ฬ‚+1๐‘˜ ฬ‚ ] ๐‘ ฬ‚ = 1/โˆš2 ๐‘– ฬ‚ + 0๐‘— ฬ‚ + 1/โˆš2 ๐‘˜ ฬ‚ ๐‘ ฬ‚ = ๐Ÿ/โˆš๐Ÿ ๐’Š ฬ‚ + ๐Ÿ/โˆš๐Ÿ ๐’Œ ฬ‚ Thus, unit vector in direction of ๐‘ โƒ— = 1/โˆš2 ๐‘– ฬ‚ + 1/โˆš2 ๐‘˜ ฬ‚

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo