Last updated at Dec. 16, 2024 by Teachoo
Ex 10.2, 9 For given vectors, ๐ โ = 2๐ ฬ โ ๐ ฬ + 2๐ ฬ and ๐ โ = โ๐ ฬ + ๐ ฬ โ ๐ ฬ , find the unit vector in the direction of the vector ๐ โ + ๐ โ๐ โ = 2๐ ฬ โ j ฬ + 2๐ ฬ = 2๐ ฬ โ 1๐ ฬ + 2๐ ฬ ๐ โ = โ๐ ฬ + ๐ ฬ โ ๐ ฬ = โ1๐ ฬ + 1๐ ฬ โ 1๐ ฬ Now, (๐ โ + ๐ โ) = (2 โ 1) ๐ ฬ + (-1 + 1) ๐ ฬ + (2 โ 1) ๐ ฬ = 1๐ ฬ + 0๐ ฬ + 1๐ ฬ Let ๐ โ = ๐ โ + ๐ โ โด c โ = 1๐ ฬ + 0๐ ฬ + 1๐ ฬ Magnitude of ๐ โ = โ(12+02+12) |๐ โ | = โ(1+0+1) = โ2 Unit vector in direction of ๐ โ = 1/|๐ โ | . ๐ โ ๐ ฬ = 1/โ2 [1๐ ฬ+0๐ ฬ+1๐ ฬ ] ๐ ฬ = 1/โ2 ๐ ฬ + 0๐ ฬ + 1/โ2 ๐ ฬ ๐ ฬ = ๐/โ๐ ๐ ฬ + ๐/โ๐ ๐ ฬ Thus, unit vector in direction of ๐ โ = 1/โ2 ๐ ฬ + 1/โ2 ๐ ฬ
Ex 10.2
Ex 10.2, 2
Ex 10.2, 3 Important
Ex 10.2, 4
Ex 10.2, 5 Important
Ex 10.2, 6
Ex 10.2, 7 Important
Ex 10.2, 8
Ex 10.2, 9 You are here
Ex 10.2, 10 Important
Ex 10.2, 11 Important
Ex 10.2, 12
Ex 10.2, 13 Important
Ex 10.2, 14
Ex 10.2, 15 Important
Ex 10.2, 16
Ex 10.2, 17 Important
Ex 10.2, 18 (MCQ) Important
Ex 10.2, 19 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo