Check sibling questions


Transcript

Ex 10.2, 8 Find the unit vector in the direction of vector (๐‘ƒ๐‘„) โƒ— , where P and Q are the points (1, 2, 3) and (4, 5, 6); respectively.P (1, 2, 3) Q (4, 5, 6) (๐‘ƒ๐‘„) โƒ— = (4 โ€“ 1) ๐‘– ฬ‚ + (5 โ€“ 2) ๐‘— ฬ‚ + (6 โ€“ 3) ๐‘˜ ฬ‚ = 3๐‘– ฬ‚ + 3๐‘— ฬ‚ + 3๐‘˜ ฬ‚ โˆด Vector joining P and Q is given by (๐‘ƒ๐‘„) โƒ— = 3๐‘– ฬ‚ + 3๐‘— ฬ‚ + 3๐‘˜ ฬ‚ Magnitude of (๐‘ƒ๐‘„) โƒ— = โˆš(32+32+32) |(๐‘ƒ๐‘„) โƒ— | = โˆš(9+9+9) = โˆš27 = 3โˆš3 Unit vector in direction of (๐‘ƒ๐‘„) โƒ— = 1/(๐‘š๐‘Ž๐‘”๐‘›๐‘–๐‘ก๐‘ข๐‘‘๐‘’ ๐‘œ๐‘“ (๐‘ƒ๐‘„) โƒ— ) ร—(๐‘ƒ๐‘„) โƒ— = 1/(3โˆš3) ["3" i ฬ‚" + 3" j ฬ‚" + 3" k ฬ‚ ] = 3/(3โˆš3) ๐‘– ฬ‚ + 3/(3โˆš3) ๐‘— ฬ‚ + 3/(3โˆš3) ๐‘˜ ฬ‚ = ๐Ÿ/โˆš๐Ÿ‘ ๐’Š ฬ‚ + ๐Ÿ/โˆš๐Ÿ‘ ๐’‹ ฬ‚ + ๐Ÿ/โˆš๐Ÿ‘ ๐’Œ ฬ‚ Thus, unit vector in direction of (๐‘ƒ๐‘„) โƒ— = 1/โˆš3 ๐‘– ฬ‚ + 1/โˆš3 ๐‘— ฬ‚ + 1/โˆš3 ๐‘˜ ฬ‚

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo