Check sibling questions


Transcript

Example 7 If A = [■8(1&2&3@2&3&1)] and B = [■8(3&−1&3@−1&0&2)] then find 2A – B. Finding 2A 2A = 2 [■8(1&2&3@2&3&1)] = [■8(2 × 1&2 × 2&2 × 3@2 × 2&2 × 3&2 × 1)] = [■8(𝟐&𝟒&𝟔@𝟒&𝟔&𝟐)] Finding 2A – B 2A – B = [■8(𝟐&𝟒&𝟔@𝟒&𝟔&𝟐)] − [■8(𝟑&−𝟏&𝟑@−𝟏&𝟎&𝟐)] = [■8(2−3&4−(−1)&6−3@4−(−1)&6−0&2−2)] = [■8(−1&4+1&3@4+1&6&0)] = [■8(−𝟏&𝟓&𝟑@𝟓&𝟔&𝟎)]

  1. Chapter 3 Class 12 Matrices
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo