Last updated at Dec. 16, 2024 by Teachoo
Ex 3.3, 6 If (i) A = [■8(cos𝛼&sin𝛼@−sin𝛼&cos𝛼 )] , then verify that A’A = I Solving L.H.S. A’A Given A = [■8(cos𝛼&sin𝛼@−sin𝛼&cos𝛼 )] So, A’ = [■8(𝐜𝐨𝐬𝜶&−𝐬𝐢𝐧𝜶@𝐬𝐢𝐧𝜶&𝐜𝐨𝐬𝜶 )] A’ A = [■8(cos𝛼&〖−sin〗𝛼@sin𝛼&cos𝛼 )] [■8(cos𝛼&sin𝛼@−sin𝛼&cos𝛼 )] = [■8(cos𝛼.cos𝛼+〖(−sin〗〖𝛼)〖(−sin〗〖𝛼)〗 〗&cos𝛼 〖.sin〗𝛼+〖(−sin〗〖𝛼)cos𝛼 〗@sin𝛼. cos𝛼+cos〖𝛼 〖(−sin〗〖𝛼)〗 〗&sin𝛼.sin𝛼+cos〖𝛼 .cos𝛼 〗 )] = [■8(cos2𝛼+sin2𝛼&sin〖𝛼 cos〖𝛼−sin〖𝛼 cos𝛼 〗 〗 〗@sin𝛼 cos〖𝛼−sin𝛼 〗 cos𝛼&sin2𝛼+cos2 a)] = [■8(𝐜𝐨𝐬𝟐𝜶+𝐬𝐢𝐧𝟐 𝜶&𝟎@𝟎&𝐬𝐢𝐧𝟐𝜶+𝐜𝐨𝐬𝟐 𝒂)] Using sin2 θ + cos2 θ = 1 = [■8(1&0@0&1)] = I = R.H.S Hence L.H.S = R.H.S Hence Proved
Ex 3.3
Ex 3.3, 2
Ex 3.3, 3
Ex 3.3, 4 Important
Ex 3.3, 5 (i)
Ex 3.3, 5 (ii)
Ex 3.3, 6 (i) You are here
Ex 3.3, 6 (ii) Important
Ex 3.3, 7 (i)
Ex 3.3, 7 (ii) Important
Ex 3.3, 8
Ex 3.3, 9
Ex 3.3, 10 (i) Important
Ex 3.3, 10 (ii)
Ex 3.3, 10 (iii) Important
Ex 3.3, 10 (iv)
Ex 3.3, 11 (MCQ) Important
Ex 3.3, 12 (MCQ)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo