Check sibling questions

   


Transcript

Ex 3.3, 2 If A = [■8(−1&2&3@5&7&9@−2&1&1)] and B= [■8(−4&1&−5@1&2&0@1&3&1)] , then verify that (i) (A + B)’ = A’ + B’ Solving L.H.S (A + B)’ First we will calculate A + B A + B = [■8(−1&2&3@5&7&9@−2&1&1)] + [■8(−4&1&−5@1&2&0@1&3&1)] = [■8(−1+(−4)&2+1&3+(−5)@5+1&7+2&9+0@−2+1&1+3&1+1)] = [■8(−5&3&−2@6&9&9@−1&4&2)] Thus, A + B = [■8(−5&3&−2@6&9&9@−1&4&2)] (A + B)’ = [■8(−𝟓&𝟔&−𝟏@𝟑&𝟗&𝟒@−𝟐&𝟗&𝟐)] Solving R.H.S A’ + B’ First we will calculate A’ and B’ A = [■8(−1&2&3@5&7&9@−2&1&1)] A’ =[■8(−1&5&−2@2&7&1@3&9&1)] B = [■8(−4&1&−5@1&2&0@1&3&1)] B’ = [■8(−4&1&1@1&2&3@−5&0&1)] Now, A’ + B’ = [■8(−1&5&−2@2&7&1@3&9&1)]+[■8(−4&1&1@1&2&3@−5&0&1)] = [■8(−1+(−4)&5+1&−2+1@2+1&7+2&1+3@3+(−5)&9+0&1+1)] =[■8(−𝟓&𝟔&−𝟏@𝟑&𝟗&𝟒@−𝟐&𝟗&𝟐)] = L.H.S Hence Proved Ex 3.3, 2 If A = [■8(−1&2&3@5&7&9@−2&1&1)] and B= [■8(−4&1&−5@1&2&0@1&3&1)] , then verify that (ii) (A – B)’ = A’ – B’ Solving L.H.S (A – B)’ First we will calculate A – B A – B = [■8(−1&2&3@5&7&9@−2&1&1)] – [■8(−4&1&−5@1&2&0@1&3&1)] = [■8(−1−(−4)&2−1&3−(−5)@5−1&7−2&9−0@−2−1&1−3&1−1)] = [■8(−1+4&1&3+5@4&5&9@−3&−2&0)] = [■8(𝟑&𝟏&𝟖@𝟒&𝟓&𝟗@−𝟑&−𝟐&𝟎)] Thus, A – B = [■8(3&1&8@4&5&9@−3&−2&0)] Now, (A – B)’ = [■8(𝟑&𝟒&−𝟑@𝟏&𝟓&−𝟐@𝟖&𝟗&𝟎)] Solving R.H.S A’ – B’ First we will calculate A’ and B’ A = [■8(−1&2&3@5&7&9@−2&1&1)] A’ = [■8(−1&5&−2@2&7&1@3&9&1)] Now, A’ – B’ = [■8(−1&5&−2@2&7&1@3&9&1)]−[■8(−4&1&1@1&2&3@−5&0&1)] = [■8(−1−(−4)&5−1&−2−1@2−1&7−2&1−3@3−(−5)&9−0&1−1)] = [■8(−1+4&4&−3@1&5&−2@3+5&9&0)] = [■8(𝟑&𝟒&−𝟑@𝟏&𝟓&−𝟐@𝟖&𝟗&𝟎)] = L.H.S Hence L.H.S = R.H.S Hence Proved

  1. Chapter 3 Class 12 Matrices
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo