Ex 10.3, 14 - Chapter 10 Class 11 Conic Sections
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 10.3, 14 Find the equation for the ellipse that satisfies the given conditions: Ends of major axis (0, ± √5) , ends of minor axis (±1, 0) Given ends of Major Axis (0, ± √5), & ends of Minor Axis (±1, 0) Major axis is along the y-axis So, our required equation of ellipse is 𝒙^𝟐/𝒃^𝟐 + 𝒚^𝟐/𝒂^𝟐 = 1 We know that End of major axis is the vertices of the ellipse So vertices of ellipse = (0, ± √5) Also, Vertices of the ellipse is (0, ± a) Comparing (0, ± a) = (0, ± √5) a = √𝟓 We know that End of minor axis = (± b, 0) So, (±1, 0) = (± b, 0) So, b = 1 Required equation of ellipse is 𝑥^2/𝑏^2 + 𝑦^2/𝑎^2 = 1 Putting values 𝑥^2/1^2 + 𝑦^2/(√5)^2 = 1 𝒙^𝟐/𝟏 + 𝒚^𝟐/𝟓 = 1
Ex 10.3
Ex 10.3, 2 Important
Ex 10.3, 3
Ex 10.3, 4
Ex 10.3, 5 Important
Ex 10.3, 6
Ex 10.3, 7 Important
Ex 10.3, 8
Ex 10.3, 9
Ex 10.3, 10
Ex 10.3, 11 Important
Ex 10.3, 12 Important
Ex 10.3, 13
Ex 10.3, 14 Important You are here
Ex 10.3, 15
Ex 10.3, 16 Important
Ex 10.3, 17
Ex 10.3, 18 Important
Ex 10.3, 19 Important
Ex 10.3, 20
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo