Β
Β
Examples
Example 2 Important
Example 3
Example 4 Important
Example 5 (i)
Example 5 (ii) Important
Example 6 (i)
Example 6 (ii) Important
Example 7
Example 8 (i)
Example 8 (ii)
Example 9 (i)
Example 9 (ii) Important
Example 10
Example 11 (i)
Example 11 (ii) Important
Example 12 (i) You are here
Example 12 (ii) Important
Example 13 (i)
Example 13 (iii)
Example 13 (ii) Important
Example 14 (i)
Example 14 (ii) Important
Last updated at Sept. 8, 2021 by Teachoo
Β
Β
Example 12 Using Identity (II), find (i) (4πβ3π)^2 (4πβ3π)^2 (πβπ)^2=π^2+π^2β2ππ Putting π = 4π & π = 3π = (4π)^2+(3π)^2β2(4π)(3π) = (4^2Γπ^2 )+(3^2Γπ^2 )β(2Γ4Γ3)Γ(πΓπ) = πππ^π+ππ^πβππππ