

Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 2 Important
Example 3
Example 4 Important
Example 5 (i)
Example 5 (ii) Important
Example 6 (i)
Example 6 (ii) Important
Example 7
Example 8 (i)
Example 8 (ii)
Example 9 (i)
Example 9 (ii) Important
Example 10
Example 11 (i)
Example 11 (ii) Important
Example 12 (i)
Example 12 (ii) Important
Example 13 (i)
Example 13 (iii)
Example 13 (ii) Important
Example 14 (i)
Example 14 (ii) Important You are here
Last updated at March 22, 2023 by Teachoo
Example 14 Use the Identity (π₯+π)(π₯+π)=π₯^2+(π+π)π₯+ππ to find the following: (ii) 95 Γ 103 95 Γ 103 = (100β5)Γ(100+3) = [100+(β5)]Γ[100+3] (π₯+π)(π₯+π)=π₯^2+(π+π)π₯+ππ Putting π₯ = 100 , π = β5 & π = 3 = (100)^2+(β5+2)(100)+(β5)(3) = 10000+(β2Γ100)+(β15) = 10000β200β15 = 1000β215 = ππππ