Question 12 - Bernoulli Trial - Chapter 13 Class 12 Probability
Last updated at April 16, 2024 by Teachoo
Bernoulli Trial
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 4 Important Deleted for CBSE Board 2025 Exams
Question 5 Deleted for CBSE Board 2025 Exams
Question 6 Important Deleted for CBSE Board 2025 Exams
Question 7 Important Deleted for CBSE Board 2025 Exams
Question 8 Deleted for CBSE Board 2025 Exams
Question 9 Deleted for CBSE Board 2025 Exams
Question 10 Important Deleted for CBSE Board 2025 Exams
Question 11 Deleted for CBSE Board 2025 Exams
Question 12 Deleted for CBSE Board 2025 Exams You are here
Question 13 Important Deleted for CBSE Board 2025 Exams
Question 14 (MCQ) Important Deleted for CBSE Board 2025 Exams
Question 15 (MCQ) Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Question 12 Find the probability of throwing at most 2 sixes in 6 throws of a single die. Let X : be the number six we get on 5 throws Throwing a pair of die is a Bernoulli trial So, X has binomial distribution P(X = x) = nCx Where n = number of times die is thrown = 6 p = Probability of getting a six = 1 6 q = 1 1 6 = 5 6 Hence, P(X = x) = 6Cx We need to find probability of throwing at most 2 sixes in 6 throws of a single die. i.e. P(X 2) P(X 2) = P(X = 0) + P(X = 1) + P(X = 2) = 6C0 1 6 0 5 6 6 +6C1 1 6 1 5 6 5 +6C2 1 6 2 5 6 4 = 1 1 5 6 6 + 6 1 6 5 6 5 + 15 1 6 2 5 6 4 = 5 6 6 + 5 6 5 + 15 1 36 5 6 4 = 5 6 6 + 5 6 5 + 5 12 5 6 4 = 5 6 4 5 6 2 + 5 6 + 5 12 = 5 6 4 25 36 + 5 6 + 5 12 = 5 6 4 25 + 30 + 15 36 = 5 6 4 70 36 = So, the required Probability is 35 18 5 6 4