Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Bernoulli Trial

Question 1
Deleted for CBSE Board 2024 Exams

Question 2 Deleted for CBSE Board 2024 Exams

Question 3 Important Deleted for CBSE Board 2024 Exams

Question 4 Important Deleted for CBSE Board 2024 Exams

Question 5 Deleted for CBSE Board 2024 Exams

Question 6 Important Deleted for CBSE Board 2024 Exams

Question 7 Important Deleted for CBSE Board 2024 Exams

Question 8 Deleted for CBSE Board 2024 Exams You are here

Question 9 Deleted for CBSE Board 2024 Exams

Question 10 Important Deleted for CBSE Board 2024 Exams

Question 11 Deleted for CBSE Board 2024 Exams

Question 12 Deleted for CBSE Board 2024 Exams

Question 13 Important Deleted for CBSE Board 2024 Exams

Question 14 (MCQ) Important Deleted for CBSE Board 2024 Exams

Question 15 (MCQ) Important Deleted for CBSE Board 2024 Exams

Chapter 13 Class 12 Probability

Serial order wise

Last updated at May 29, 2023 by Teachoo

Question 8 Suppose X has a binomial distribution B (6, 12) . Show that X = 3 is the most likely outcome. (Hint : P(X = 3) is the maximum among all P(xi), xi = 0,1,2,3,4,5,6) B(6, 12) means Here , n = 6, p = 𝟏𝟐 So , q = 1 − 12 = 12 Hence, P (X = x) = 6Cx 12𝑥 126−𝑥 P (X = x) = 6Cx 12𝑥 + 6 − 𝑥 P (X = x) = 6Cx 𝟏𝟐𝒙 Hence, P (X = x) = 6Cx 12𝑥 We need to show that X = 3 is the most likely outcome. i.e. P(X = 3) is the maximum among P(X = 0) , P(X = 1), P(X = 2), P(X = 3), P(X = 4), P(X = 5), P(X = 6) Since P(X = 3) is maximum ∴ Most likely outcome is X = 3