# Question 2 - Bernoulli Trial - Chapter 13 Class 12 Probability

Last updated at April 16, 2024 by Teachoo

Bernoulli Trial

Question 1
Deleted for CBSE Board 2024 Exams

Question 2 Deleted for CBSE Board 2024 Exams You are here

Question 3 Important Deleted for CBSE Board 2024 Exams

Question 4 Important Deleted for CBSE Board 2024 Exams

Question 5 Deleted for CBSE Board 2024 Exams

Question 6 Important Deleted for CBSE Board 2024 Exams

Question 7 Important Deleted for CBSE Board 2024 Exams

Question 8 Deleted for CBSE Board 2024 Exams

Question 9 Deleted for CBSE Board 2024 Exams

Question 10 Important Deleted for CBSE Board 2024 Exams

Question 11 Deleted for CBSE Board 2024 Exams

Question 12 Deleted for CBSE Board 2024 Exams

Question 13 Important Deleted for CBSE Board 2024 Exams

Question 14 (MCQ) Important Deleted for CBSE Board 2024 Exams

Question 15 (MCQ) Important Deleted for CBSE Board 2024 Exams

Chapter 13 Class 12 Probability

Serial order wise

Last updated at April 16, 2024 by Teachoo

Question 2 A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes. Let X : be the number of doublets Throwing a pair of die is a Bernoulli trial So, X has binomial distribution P(X = x) = nCx 𝒒𝒏−𝒙 𝒑𝒙 Where n = number of times die is thrown = 4 Finding p, q If 2 dies are thrown, there are 6 × 6 = 36 outcomes Doublet: It means same number is obtained on both throws of die Number of doublets possible on 2 throws of die are (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) P(getting a doublet) = p = 636 = 16 P(not getting a doublet) = q = 1 – 16 = 56 Hence, P(X = x) = 4Cx 𝟏𝟔𝒙 𝟓𝟔𝟒 − 𝒙 We need to find probability of two successes. P(getting two successes) = P(getting 2 doublets) = P(X = 2) = 4C2 162 564 −2 = 4! 4 − 2! 2! 162 562 = 4 × 3 × 2!2! × 2! 162 562 = 2 × 3 × 16 × 6 × 2536 = 𝟐𝟓𝟐𝟏𝟔