# Question 5 - Bernoulli Trial - Chapter 13 Class 12 Probability

Last updated at April 16, 2024 by Teachoo

Bernoulli Trial

Question 1
Deleted for CBSE Board 2025 Exams

Question 2 Deleted for CBSE Board 2025 Exams

Question 3 Important Deleted for CBSE Board 2025 Exams

Question 4 Important Deleted for CBSE Board 2025 Exams

Question 5 Deleted for CBSE Board 2025 Exams You are here

Question 6 Important Deleted for CBSE Board 2025 Exams

Question 7 Important Deleted for CBSE Board 2025 Exams

Question 8 Deleted for CBSE Board 2025 Exams

Question 9 Deleted for CBSE Board 2025 Exams

Question 10 Important Deleted for CBSE Board 2025 Exams

Question 11 Deleted for CBSE Board 2025 Exams

Question 12 Deleted for CBSE Board 2025 Exams

Question 13 Important Deleted for CBSE Board 2025 Exams

Question 14 (MCQ) Important Deleted for CBSE Board 2025 Exams

Question 15 (MCQ) Important Deleted for CBSE Board 2025 Exams

Chapter 13 Class 12 Probability

Serial order wise

Last updated at April 16, 2024 by Teachoo

Question 5 The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs (i) none (ii) not more than one (iii) more than one (iv) at least one will fuse after 150 days of use.Let X : Number of bulbs fused Picking a bulb is a Bernoulli trial So, X has a binomial distribution P(X = x) = nCx 𝒒^(𝒏−𝒙) 𝒑^𝒙 Here n = number of bulbs picked = 5 p = Probability of getting fused bulb = 0.05 q = 1 − p = 1 − 0.05 = 0.95 Hence, P(X = x) = 5Cx (𝟎.𝟎𝟓)^𝒙 (𝟎.𝟗𝟓)^(𝟓−𝒙) Probability that out of 5 such bulbs none fuses i.e. P(X = 0) P(X = 0) = 5C0 (0.05)^0 (0.95)^(5−0) = 1 × 1 × (0.95)5 = (0.95)5 (ii) Probability that out of 5 such bulbs not more than one fuses P(not not than one) = P( X ≤ 1) = P(X = 0) + P(X = 1) = 5C0 (0.05)^0 (0.95)^(5−0) + 5C1 (0.05)^1 (0.95)^(5−1) = 1 × 1 × (0.95)5 + 5 × 0.05 × (0.95)4 = (0.95)4 [0.95+0.25] = (0.95)4 × 1.2 (iii) Probability that out of 5 such bulbs more than one fuses P (more than one) = 1 − P (not more than one) = 1 − ((0.95)4 × 1.2) (iv) probability that out of 5 such bulbs atleast one fuses P (At least one) = 1 − P (not even one fuses ) = 1 − P (0) = 1 − (0.95)5