ย  Example 30 - Find dy/dx if y^x + x^y + x^x = a^b - Teachoo - Examples

part 2 - Example 30 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability
part 3 - Example 30 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability
part 4 - Example 30 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability
part 5 - Example 30 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability part 6 - Example 30 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability part 7 - Example 30 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability part 8 - Example 30 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability part 9 - Example 30 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

Share on WhatsApp

Transcript

Example 30 Find ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ , if ๐‘ฆ^๐‘ฅ+๐‘ฅ^๐‘ฆ+๐‘ฅ^๐‘ฅ=๐‘Ž^๐‘. Let u = ๐‘ฆ๐‘ฅ, v = ๐‘ฅ๐‘ฆ & w = ๐‘ฅ^๐‘ฅ Now, ๐’– + ๐’— + ๐’˜ = ๐’‚^๐’ƒ Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ (๐‘‘ (๐‘ข + ๐‘ฃ + ๐‘ค))/๐‘‘๐‘ฅ = (๐‘‘(๐‘Ž^๐‘))/๐‘‘๐‘ฅ (๐‘‘(๐‘ข))/๐‘‘๐‘ฅ + (๐‘‘(๐‘ฃ))/๐‘‘๐‘ฅ + (๐‘‘(๐‘ค))/๐‘‘๐‘ฅ = 0 We will calculate derivative of u, v & w separately . Finding Derivative of ๐’– . ๐‘ข = ๐‘ฆ^๐‘ฅ Taking log both sides logโก๐‘ข=logโกใ€– (๐‘ฆ^๐‘ฅ)" " ใ€— logโก๐‘ข=ใ€–๐‘ฅ . logใ€—โก๐‘ฆ" " Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ (๐‘‘(logโก๐‘ข))/๐‘‘๐‘ฅ = (๐‘‘(๐‘ฅ . logโก๐‘ฆ))/๐‘‘๐‘ฅ (๐‘‘(logโก๐‘ข))/๐‘‘๐‘ฅ (๐‘‘๐‘ข/๐‘‘๐‘ข) = ๐‘‘(๐‘ฅ.logโก๐‘ฆ )/๐‘‘๐‘ฅ 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = (๐‘‘ (๐‘ฅ . logโก๐‘ฆ ))/๐‘‘๐‘ฅ (๐ด๐‘  logโกใ€–(๐‘Ž^๐‘)ใ€—=๐‘ logโก๐‘Ž) By product Rule (uv)โ€™ = uโ€™v + vโ€™u 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = ๐‘‘๐‘ฅ/๐‘‘๐‘ฅ . logโก๐‘ฆ + (๐‘‘(logโก๐‘ฆ))/๐‘‘๐‘ฅ . ๐‘ฅ 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = 1 . logโก๐‘ฆ + ๐‘ฅ. ๐‘‘(logโก๐‘ฆ )/๐‘‘๐‘ฅ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฆ 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = logโก๐‘ฆ + ๐‘ฅ. ๐‘‘(logโก๐‘ฆ )/๐‘‘๐‘ฅ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = logโก๐‘ฆ + ๐‘ฅ. 1/๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ 1/๐‘ข . ๐‘‘๐‘ข/๐‘‘๐‘ฅ = logโก๐‘ฆ + ๐‘ฅ/๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ ๐‘‘๐‘ข/๐‘‘๐‘ฅ = ๐‘ข (logโก๐‘ฆ "+ " ๐‘ฅ/๐‘ฆ " " ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ) ๐’…๐’–/๐’…๐’™ = ๐’š^๐’™ (๐’๐’๐’ˆโก๐’š "+ " ๐’™/๐’š " " ๐’…๐’š/๐’…๐’™) Finding derivative of v v = xy Taking log both sides logโก๐‘ฃ=logโกใ€– (๐‘ฅ^๐‘ฆ)" " ใ€— logโก๐‘ฃ=ใ€–๐‘ฆ. logใ€—โก๐‘ฅ" " Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ (๐‘‘(logโก๐‘ฃ))/๐‘‘๐‘ฅ = (๐‘‘(๐‘ฆ . logโก๐‘ฅ))/๐‘‘๐‘ฅ (๐‘‘(logโก๐‘ฃ))/๐‘‘๐‘ฅ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = ๐‘‘(ใ€–๐‘ฆ logใ€—โก๐‘ฅ )/๐‘‘๐‘ฅ 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = ( ๐‘‘(ใ€–๐‘ฆ logใ€—โก๐‘ฅ ))/๐‘‘๐‘ฅ By product Rule (uv)โ€™ = uโ€™v + vโ€™u 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = ( ๐‘‘(๐‘ฆ))/๐‘‘๐‘ฅ . logโก๐‘ฅ + (๐‘‘ (logโก๐‘ฅ))/๐‘‘๐‘ฅ . ๐‘ฆ 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = ( ๐‘‘(๐‘ฆ))/๐‘‘๐‘ฅ . logโก๐‘ฅ + (๐‘‘ (logโก๐‘ฅ))/๐‘‘๐‘ฅ . ๐‘ฆ 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = ( ๐‘‘๐‘ฆ)/๐‘‘๐‘ฅ . logโก๐‘ฅ + 1/๐‘ฅ . ๐‘ฆ 1/๐‘ฃ (๐‘‘๐‘ฃ/๐‘‘๐‘ฅ) = ( ๐‘‘๐‘ฆ)/๐‘‘๐‘ฅ logโก๐‘ฅ + ๐‘ฆ/๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ = v (log ( ๐‘‘๐‘ฆ)/๐‘‘๐‘ฅ ๐‘ฅ+๐‘ฆ/๐‘ฅ) Putting values of ๐‘ฃ = ๐‘ฅ^๐‘ฆ ๐’…๐’—/๐’…๐’™ = ๐’™^๐’š (๐’…๐’š/๐’…๐’™ ๐’๐’๐’ˆโกใ€–๐’™+ ๐’š/๐’™ใ€— ) Calculating derivative of ๐’˜ ๐‘ค = ๐‘ฅ^๐‘ฅ Taking log both sides logโก๐‘ค=logโกใ€– (๐‘ฅ^๐‘ฅ)" " ใ€— logโก๐‘ค=ใ€–๐‘ฅ. logใ€—โก๐‘ฅ" " Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ (๐‘‘(logโก๐‘ค))/๐‘‘๐‘ฅ = (๐‘‘(๐‘ฅ . logโก๐‘ฅ))/๐‘‘๐‘ฅ (๐‘‘(logโก๐‘ค))/๐‘‘๐‘ฅ (๐‘‘๐‘ค/๐‘‘๐‘ค) = ๐‘‘(๐‘ฅ logโก๐‘ฅ )/๐‘‘๐‘ฅ (๐‘‘(logโก๐‘ค))/๐‘‘๐‘ค . ๐‘‘๐‘ค/๐‘‘๐‘ฅ = ๐‘‘(๐‘ฅ logโก๐‘ฅ )/๐‘‘๐‘ฅ (๐ด๐‘  logโกใ€–(๐‘Ž^๐‘)ใ€—=๐‘ logโก๐‘Ž) 1/๐‘ค . ๐‘‘๐‘ค/๐‘‘๐‘ฅ = ๐‘‘(๐‘ฅ logโก๐‘ฅ )/๐‘‘๐‘ฅ logโก๐‘ค=ใ€–๐‘ฅ. logใ€—โก๐‘ฅ" " Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ (๐‘‘(logโก๐‘ค))/๐‘‘๐‘ฅ = (๐‘‘(๐‘ฅ . logโก๐‘ฅ))/๐‘‘๐‘ฅ (๐‘‘(logโก๐‘ค))/๐‘‘๐‘ฅ (๐‘‘๐‘ค/๐‘‘๐‘ค) = ๐‘‘(๐‘ฅ logโก๐‘ฅ )/๐‘‘๐‘ฅ (๐‘‘(logโก๐‘ค))/๐‘‘๐‘ค . ๐‘‘๐‘ค/๐‘‘๐‘ฅ = ๐‘‘(๐‘ฅ logโก๐‘ฅ )/๐‘‘๐‘ฅ 1/๐‘ค . ๐‘‘๐‘ค/๐‘‘๐‘ฅ = ๐‘‘(๐‘ฅ logโก๐‘ฅ )/๐‘‘๐‘ฅ By product Rule (uv)โ€™ = uโ€™v + vโ€™u 1/๐‘ค (๐‘‘๐‘ค/๐‘‘๐‘ฅ) = ( ๐‘‘(๐‘ฅ))/๐‘‘๐‘ฅ . logโก๐‘ฅ + (๐‘‘ (logโก๐‘ฅ))/๐‘‘๐‘ฅ . ๐‘ฅ 1/๐‘ค (๐‘‘๐‘ค/๐‘‘๐‘ฅ) = 1 . logโก๐‘ฅ + 1/๐‘ฅ . ๐‘ฅ 1/๐‘ค (๐‘‘๐‘ค/๐‘‘๐‘ฅ) = (logโกใ€–๐‘ฅ+1ใ€—) ๐‘‘๐‘ค/๐‘‘๐‘ฅ = ๐‘ค(logโกใ€–๐‘ฅ+1ใ€—) ๐’…๐’˜/๐’…๐’™ = ๐’™^๐’™ (๐’๐’๐’ˆโกใ€–๐’™+๐Ÿใ€— ) From (1) ๐‘‘๐‘ข/๐‘‘๐‘ฅ + ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + ๐‘‘๐‘ค/๐‘‘๐‘ฅ = 0 Putting values from (2), (3) & (4) (๐‘ฆ^๐‘ฅ logโกใ€–๐‘ฆ+๐‘ฆ^(๐‘ฅโˆ’1). ๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ ใ€— ) + (๐‘ฅ^๐‘ฆ logโกใ€–๐‘ฅ.๐‘‘๐‘ฆ/๐‘‘๐‘ฅ+๐‘ฅ^๐‘ฆ.๐‘ฆ/๐‘ฅ ใ€— ) + (๐‘ฅ^๐‘ฅ (logโกใ€–๐‘ฅ+1ใ€—))=0(๐‘ฆ^๐‘ฅ logโกใ€–๐‘ฆ+๐‘ฅ^๐‘ฆ. ๐‘ฆ/๐‘ฅ+๐‘ฅ^๐‘ฅ (logโกใ€–๐‘ฅ+1ใ€—)ใ€— ) + (๐‘ฆ^(๐‘ฅโˆ’1) .โกใ€–๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ+๐‘ฅ^๐‘ฆ logโกใ€–๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅใ€— ใ€— ) = 0 (๐‘ฆ^(๐‘ฅโˆ’1) .โกใ€–๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ+๐‘ฅ^๐‘ฆ logโกใ€–๐‘ฆ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅใ€— ใ€— ) = โˆ’ (๐‘ฆ^๐‘ฅ logโกใ€–๐‘ฆ+๐‘ฅ^๐‘ฆ. ๐‘ฆ/๐‘ฅ+๐‘ฅ^๐‘ฅ (logโกใ€–๐‘ฅ+1ใ€—)ใ€— ) (๐‘ฆ^(๐‘ฅโˆ’1) .โกใ€–๐‘ฅ +๐‘ฅ^๐‘ฆ logโกใ€–๐‘ฅ ใ€— ใ€— ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = โˆ’ (๐‘ฆ^๐‘ฅ logโกใ€–๐‘ฆ+๐‘ฅ^๐‘ฆ. ๐‘ฆ/๐‘ฅ+๐‘ฅ^๐‘ฅ (logโกใ€–๐‘ฅ+1ใ€—)ใ€— ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = "โˆ’" (๐‘ฆ^๐‘ฅ ๐‘™๐‘œ๐‘”โกใ€–๐‘ฆ + ๐‘ฅ^๐‘ฆ. ๐‘ฆ/๐‘ฅ + ๐‘ฅ^๐‘ฅ (1 + ๐‘™๐‘œ๐‘”โก๐‘ฅ)ใ€— )/((ใ€–๐‘ฅ๐‘ฆใ€—^(๐‘ฅโˆ’1) +โกใ€–๐‘ฅ^๐‘ฆ ๐‘™๐‘œ๐‘”โกใ€–๐‘ฅ ใ€— ใ€—)) ๐’…๐’š/๐’…๐’™ = "โˆ’" (๐’š^๐’™ ๐’๐’๐’ˆโกใ€–๐’š + ๐’™^(๐’š โˆ’ ๐Ÿ) ๐’š + ๐’™^๐’™ (๐Ÿ + ๐’๐’๐’ˆโก๐’™)ใ€— )/((ใ€–๐’™๐’šใ€—^(๐’™โˆ’๐Ÿ) +โกใ€–๐’™^๐’š ๐’๐’๐’ˆโกใ€–๐’™ ใ€— ใ€—))

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo