Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Checking continuity at any point
Checking continuity at any point
Last updated at April 13, 2021 by Teachoo
Example 17 Discuss the continuity of sine function.Let π(π₯)=sinβ‘π₯ Letβs check continuity of f(x) at any real number Let c be any real number. We know that A function is continuous at π₯ = π if L.H.L = R.H.L = π(π) i.e. limβ¬(xβπ^β ) π(π₯)= limβ¬(xβπ^+ ) " " π(π₯)= π(π) LHL at x β c limβ¬(xβπ^β ) f(x) = limβ¬(hβ0) f(c β h) = (πππ)β¬(ββ0) sinβ‘γ(πγββ) = (πππ)β¬(ββ0) (sinβ‘π cosβ‘β "β cos c sin h " ) = (sinβ‘π cosβ‘0 "β cos c sin 0" ) = sinβ‘πΓ 1"β cos c" Γ 0 = sin c sinβ‘(π₯βπ¦) =sinβ‘π₯ cosβ‘π¦βcosβ‘π₯ sinβ‘π¦ π΄π , cosβ‘0=1 & sinβ‘0=0 RHL at x β c limβ¬(xβπ^+ ) f(x) = limβ¬(hβ0) f(c + h) = (πππ)β¬(ββ0) sinβ‘γ(πγ+β) = (πππ)β¬(ββ0) (sinβ‘π cosβ‘β "+ cos c sin h " ) = (sinβ‘π cosβ‘0 "+ cos c sin 0" ) = sinβ‘πΓ 1" + cos c" Γ 0 = sin c sinβ‘(π₯+π¦) =sinβ‘π₯ cosβ‘π¦+cosβ‘π₯ sinβ‘π¦ π΄π , cosβ‘0=1 & sinβ‘0=0 And, π(π) = πππβ‘π Since L.H.L = R.H.L = π(π) Therefore, π(π₯) is continuous for all real number So, πππβ‘π is continuous.