Chapter 10 Class 12 Vector Algebra
Concept wise

This video is only available for Teachoo black users

Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month

Transcript

Example 8 Find the unit vector in the direction of the sum of the vectors, π β = 2π Μ + 2 π Μ β 5π Μ and π β = 2π Μ + π Μ + 3π Μ Given π β = 2π Μ + 2π Μ β 5π Μ π β = 2π Μ + 1π Μ + 3π Μ Let π β = (π β + π β) = (2 + 2) π Μ + (2 + 1) π Μ + (β5 + 3) π Μ = 4π Μ + 3π Μ β 2π Μ β΄ π β = 4π Μ + 3π Μ β 2π Μ Magnitude of π β = β(42+32+(β2)2) |π β | = β(16+9+4) = βππ Unit vector in direction of π β = π/|π β | π β π Μ = 1/β29 ["4" π Μ" + 3" π Μ" β 2" π Μ ] π Μ = 4/β29 π Μ" " + 3/β29 π Μ" "β 2/β29 π Μ" " Thus, Required unit vector = π/βππ π Μ" " + π/βππ π Μ" "β π/βππ π Μ