Chapter 10 Class 12 Vector Algebra
Concept wise

This video is only available for Teachoo black users

Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month

### Transcript

Ex 10.2, 9 For given vectors, π β = 2π Μ β π Μ + 2π Μ and π β = βπ Μ + π Μ β π Μ , find the unit vector in the direction of the vector π β + π βπ β = 2π Μ β j Μ + 2π Μ = 2π Μ β 1π Μ + 2π Μ π β = βπ Μ + π Μ β π Μ = β1π Μ + 1π Μ β 1π Μ Now, (π β + π β) = (2 β 1) π Μ + (-1 + 1) π Μ + (2 β 1) π Μ = 1π Μ + 0π Μ + 1π Μ Let π β = π β + π β β΄ c β = 1π Μ + 0π Μ + 1π Μ Magnitude of π β = β(12+02+12) |π β | = β(1+0+1) = β2 Unit vector in direction of π β = 1/|π β | . π β π Μ = 1/β2 [1π Μ+0π Μ+1π Μ ] π Μ = 1/β2 π Μ + 0π Μ + 1/β2 π Μ π Μ = π/βπ π Μ + π/βπ π Μ Thus, unit vector in direction of π β = 1/β2 π Μ + 1/β2 π Μ