Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Section formula
Last updated at May 29, 2023 by Teachoo
Ex 10.2, 16 Find the position vector of the mid point of the vector joining the points P(2, 3, 4) and Q(4, 1, β2). P(2, 3, 4) , Q(4, 1, β2) Let the midpoint of PQ be R. Position vector of P = (2 β 0) π Μ + (3 β 0) π Μ + (4 β 0) π Μ (ππ) β = 2π Μ + 3π Μ + 4π Μ Position vector of Q = (4 β 0) π Μ + (1 β 0) π Μ + (β2 β 0) π Μ (ππ) β = 4π Μ + 1π Μ β 2π Μ Position vector of R = ((πΆπΈ) β + (πΆπ·) β)/π (ππ ) β = ((4π Μ + 1π Μ β 2π Μ ) + (2π Μ + 3π Μ + 4π Μ))/2 (ππ ) β = ((4 + 2) π Μ + (1 + 3) π Μ + (β2 + 4)π Μ)/2 (ππ ) β = (6π Μ + 4π Μ + 2π Μ)/2 (ππ ) β = (2(3π Μ + 2π Μ + π Μ))/2 (ππ ) β = ππ Μ+ππ Μ+π Μ Therefore, position vector of midpoint of PQ is 3π Μ + 2π Μ + π Μ