Vector product - Defination

Chapter 10 Class 12 Vector Algebra
Concept wise

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

### Transcript

Ex 10.4, 1 Find |π βΓπ β |, if π β = π Μ β 7π Μ + 7π Μ and π β = 3π Μ β 2π Μ + 2π Μπ β = π Μ β 7π Μ + 7π Μ = 1π Μ β 7π Μ + 7π Μ π β = 3π Μ β 2π Μ + 2k Μ π β Γ π β = |β 8(π Μ&π Μ&π Μ@β([email protected])&β(β7@β2)&β([email protected]))| = π Μ |β 8(β7&7@β2&2)| βπ Μ |β 8(1&[email protected]&2)| + k Μ |β 8(1&β[email protected]&β2)| = π Μ ("β7 Γ 2 β (β2 Γ 7)" ) β π Μ((1Γ2 ) β (3Γ7 )) + π Μ((1Γ2 ) β (3 Γ β7)) = π Μ (β14β(β14)) β π Μ(2β21 ) + π Μ((β2β(β21)) = π Μ (0) β π Μ (β19) + π Μ(19) = 0π Μ + 19π Μ + 19π Μ β΄ π β Γ π β = 0π Μ + 19π Μ + 19π Μ Magnitude of π β Γ π β = β(02+192+192) |π β" Γ" π β | = β(0+361+361) = β722 = β(19Γ19Γ2 ) = 19βπ Therefore, the magnitude of π β" Γ" π β is 19βπ.