If a, b, c are unit vectors such that a + b + c = 0, find value of a.b

Ex 10.3, 13 - Chapter 10 Class 12 Vector Algebra - Part 2
Ex 10.3, 13 - Chapter 10 Class 12 Vector Algebra - Part 3

Ex 10.3, 13 - Chapter 10 Class 12 Vector Algebra - Part 4

Ex 10.3, 13 - Chapter 10 Class 12 Vector Algebra - Part 5 Ex 10.3, 13 - Chapter 10 Class 12 Vector Algebra - Part 6 Ex 10.3, 13 - Chapter 10 Class 12 Vector Algebra - Part 7


Transcript

Ex 10.3, 13 (Method 1) If 𝑎 ⃗ ,𝑏 ⃗, 𝑐 ⃗ are unit vectors such that 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ = 0 ⃗, find the value of 𝑎 ⃗ .𝑏 ⃗+𝑏 ⃗ . 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗ . Given 𝑎 ⃗ ,𝑏 ⃗, 𝑐 ⃗ are unit vectors Magnitude of 𝑎 ⃗ ,𝑏 ⃗, 𝑐 ⃗ is 1 So, |𝒂 ⃗ | = |𝒃 ⃗ | = |𝒄 ⃗ | = 1 Also, 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ = 0 ⃗ So, |𝒂 ⃗" + " 𝒃 ⃗" + " 𝒄 ⃗ | = |𝟎 ⃗ | = 0 Now, |𝒂 ⃗+𝒃 ⃗+𝒄 ⃗ |2 = (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) . (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) = 𝑎 ⃗. 𝑎 ⃗ + 𝑎 ⃗ . 𝑏 ⃗ + 𝒂 ⃗ . 𝒄 ⃗ + 𝒃 ⃗ . 𝒂 ⃗ + 𝑏 ⃗ . 𝑏 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ + 𝑐 ⃗ . 𝑎 ⃗ + 𝒄 ⃗ . 𝒃 ⃗ + 𝑐 ⃗ . 𝑐 ⃗ = 𝑎 ⃗. 𝑎 ⃗ + 𝑎 ⃗ . 𝑏 ⃗ + 𝒄 ⃗ . 𝒂 ⃗ + 𝒂 ⃗ . 𝒃 ⃗ + 𝑏 ⃗ . 𝑏 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ + 𝑐 ⃗ . 𝑎 ⃗ + 𝒃 ⃗ . 𝒄 ⃗ + 𝑐 ⃗ . 𝑐 ⃗ = 𝑎 ⃗ . 𝑎 ⃗ + 𝑏 ⃗ . 𝑏 ⃗ + 𝑐 ⃗ . 𝑐 ⃗ + 2𝑎 ⃗. 𝑏 ⃗ + 2𝑏 ⃗. 𝑐 ⃗ + 2𝑐 ⃗. 𝑎 ⃗ = 𝒂 ⃗ . 𝒂 ⃗ + 𝒃 ⃗ . 𝒃 ⃗ + 𝒄 ⃗ . 𝒄 ⃗ + 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = |𝒂 ⃗ |𝟐 + |𝒃 ⃗ |𝟐 + |𝒄 ⃗ |𝟐 + 2 (𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗ . 𝑎 ⃗) = 12 + 12 + 12 + 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = 1 + 1 + 1 + 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = 3 + 2 (𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) ∴ |𝑎 ⃗+𝑏 ⃗+𝑐 ⃗ |2 = 3 + 2 (𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) Now, |𝑎 ⃗" + " 𝑏 ⃗" + " 𝑐 ⃗ | = 0 |𝑎 ⃗" + " 𝑏 ⃗" + " 𝑐 ⃗ |^2 = 0 3 + 2 (𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = 0 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = −3 (𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝒄 ⃗. 𝒂 ⃗) = (−𝟑)/𝟐 Ex 10.3, 13 (Method 2) If 𝑎 ⃗ ,𝑏 ⃗, 𝑐 ⃗ are unit vectors such that 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ = 0, find the value of 𝑎 ⃗ .𝑏 ⃗+𝑏 ⃗ . 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗ . Given 𝑎 ⃗ ,𝑏 ⃗, 𝑐 ⃗ are unit vectors So, |𝒂 ⃗ | = |𝒃 ⃗ | = |𝒄 ⃗ | = 1 Also, ( 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ ) = 0 ⃗ Now, 𝒂 ⃗ . (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) = 𝑎 ⃗ . 𝑎 ⃗ + 𝑎 ⃗. 𝑏 ⃗ + 𝑎 ⃗ . 𝑐 ⃗ 𝑎 ⃗ . 0 ⃗ = 𝑎 ⃗. 𝑎 ⃗ + 𝑎 ⃗. 𝑏 ⃗ + 𝑎 ⃗. 𝑐 ⃗ 0 = 𝒂 ⃗. 𝒂 ⃗ + 𝑎 ⃗. 𝑏 ⃗ + 𝑎 ⃗. 𝑐 ⃗ 0 ⃗ = |𝒂 ⃗ |𝟐 + 𝑎 ⃗. 𝑏 ⃗ + 𝑎 ⃗. 𝑐 ⃗ 0 ⃗ = |𝒂 ⃗ |𝟐 + 𝑎 ⃗. 𝑏 ⃗ + 𝑎 ⃗. 𝑐 ⃗ 0 ⃗ = |𝑎 ⃗ |2 + 𝑎 ⃗. 𝑏 ⃗ + 𝒄 ⃗. 𝒂 ⃗ 0 = 12 + 𝑎 ⃗. 𝑏 ⃗ + 𝑐 ⃗. 𝑎 ⃗ 𝑎 ⃗. 𝑏 ⃗ + 𝑐 ⃗. 𝑎 ⃗ = −1 Also, 𝒃 ⃗ . (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) = 𝑏 ⃗ . 𝑎 ⃗ + 𝑏 ⃗. 𝑏 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ 𝑏 ⃗ . 0 ⃗ = 𝑏 ⃗. 𝑎 ⃗ + 𝑏 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ 0 = 𝒃 ⃗. 𝒂 ⃗ + 𝑏 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ 0 = 𝒂 ⃗. 𝒃 ⃗ + 𝑏 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ 0 = 𝑎 ⃗. 𝑏 ⃗ + 𝒃 ⃗. 𝒃 ⃗ + 𝑏 ⃗. 𝑐 ⃗ 0 = 𝑎 ⃗. 𝑏 ⃗ + |𝒃 ⃗ |2 + 𝑏 ⃗ . 𝑐 ⃗ 0 = 𝑎 ⃗. 𝑏 ⃗ + 12 + 𝑏 ⃗ . 𝑐 ⃗ 𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ = −1 Also 𝒄 ⃗ . (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) = 𝑐 ⃗ . 𝑎 ⃗ + 𝑐 ⃗ . 𝑏 ⃗ + 𝑐 ⃗ . 𝑐 ⃗ 𝑐 ⃗. 0 ⃗ = 𝑐 ⃗. 𝑎 ⃗ + 𝑐 ⃗. 𝑏 ⃗ + 𝑐 ⃗. 𝑐 ⃗ 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝒄 ⃗. 𝒃 ⃗ + 𝑐 ⃗. 𝑐 ⃗ 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝑐 ⃗. 𝑐 ⃗ 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝒄 ⃗. 𝒄 ⃗ 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + |𝑐 ⃗ |2 0 = 𝑐 ⃗. 𝑎 ⃗+ 𝑏 ⃗ . 𝑐 ⃗ + 12 𝑐 ⃗. 𝑎 ⃗ + 𝑏 ⃗. 𝑐 ⃗ = −1 Adding (1), (2) and (3) (𝑎 ⃗. 𝑏 ⃗ + 𝑐 ⃗. 𝑎 ⃗) + (𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗) + (𝑐 ⃗. 𝑎 ⃗ + 𝑏 ⃗. 𝑐 ⃗) = −1 + (–1) + (–1) 2𝑎 ⃗. 𝑏 ⃗ + 2𝑐 ⃗. 𝑎 ⃗ + 2𝑏 ⃗. 𝑐 ⃗ = −3 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = −3 𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝒄 ⃗. 𝒂 ⃗ = (−𝟑)/𝟐

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.