








Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month
Area between curve and curve
Misc 13
Ex 8.2, 4 Important Deleted for CBSE Board 2023 Exams
Ex 8.2, 5 Important Deleted for CBSE Board 2023 Exams
Misc 14 Important
Misc 4 Important
Misc 11 Important
Ex 8.2,1 Important Deleted for CBSE Board 2023 Exams
Misc 15 Deleted for CBSE Board 2023 Exams You are here
Example 7 Important Deleted for CBSE Board 2023 Exams
Misc 18 (MCQ) Deleted for CBSE Board 2023 Exams
Example 15 Important
Ex 8.2, 2 Deleted for CBSE Board 2023 Exams
Example 10 Important Deleted for CBSE Board 2023 Exams
Example 6 Important Deleted for CBSE Board 2023 Exams
Misc 19 (MCQ) Important Deleted for CBSE Board 2023 Exams
Area between curve and curve
Last updated at Dec. 8, 2016 by Teachoo
Misc 15 Find the area of the region { , : 2 4 , 4 2+ 4 2 9} Drawing figures Now, our figure will be Circle is 4 2+ 4 2 9 2+ 2 9 4 2+ 2 3 2 2 Radius of circle = 3 2 So, Point C ( 3 2 , 0) Finding point of intersection A & B Solving 2 =4 (1) & 4 2+ 4 2= 9 (2) Putting (1) in (2) 4 2+ 4 2= 9 4 2+ 4 4 =9 4 2+16 9=0 4 2+18 2 9=0 2 (2 +9) 1(2 +9)=0 2 1 2 +9 =0 So, = 1 2 & = 9 2 Area OAC Area OAC = Area ACD + Area OAD Area ACD Area ACD = 1 2 3 2 Equation of circle 2 + 2 = 9 4 2 = 9 4 2 = 9 4 2 Therefore Area ACD = 1 2 3 2 9 4 2 = 1 2 3 2 3 2 2 2 = 2 3 2 2 2 + 3 2 2 2 sin 1 3 2 1 2 3 2 = 2 9 4 2 + 9 8 sin 1 2 3 1 2 3 2 = 3 2 2 9 4 3 2 2 + 9 8 sin 1 2 3 2 3 1 2 2 9 4 1 2 2 + 9 8 sin 1 2 1 2 3 = 3 4 9 4 9 4 + 9 8 sin 1 1 1 4 9 4 1 4 + 9 8 sin 1 1 3 = 9 8 sin 1 1 2 4 9 8 sin 1 1 3 = 9 16 2 4 9 8 sin 1 1 3 Area OAD Area OAD = 0 1 2 Equation of parabola 2 =4 = 4 Therefore Area OAD = 0 1 2 4 =2 0 1 2 =2 0 1 2 1 2 =2 3 2 3 2 0 1 2 = 4 3 [ 3 2 ] 0 1 2 = 4 3 1 2 3 2 0 3 2 = 4 3 1 2 2 = 4 3 1 2 2 2 2 = 2 3 Area OAC = Area ACD + Area OAD = 9 16 2 4 9 8 sin 1 1 3 + 2 3 = 9 16 9 8 sin 1 1 3 + 2 12 Required Area = 2 Area OAC = 2 9 16 9 8 sin 1 1 3 + 2 12 = 9 8 9 4 sin 1 1 3 + 2 6 = 9 8 9 4 sin 1 1 3 + 2 6 2 2 = 9 8 9 4 sin 1 1 3 + 2 6 2 = +