Check sibling questions

Example 7 - Find area lying above x-axis, included b/w circle

Example 7 - Chapter 8 Class 12 Application of Integrals - Part 2
Example 7 - Chapter 8 Class 12 Application of Integrals - Part 3
Example 7 - Chapter 8 Class 12 Application of Integrals - Part 4
Example 7 - Chapter 8 Class 12 Application of Integrals - Part 5
Example 7 - Chapter 8 Class 12 Application of Integrals - Part 6
Example 7 - Chapter 8 Class 12 Application of Integrals - Part 7
Example 7 - Chapter 8 Class 12 Application of Integrals - Part 8
Example 7 - Chapter 8 Class 12 Application of Integrals - Part 9
Example 7 - Chapter 8 Class 12 Application of Integrals - Part 10

Introducing your new favourite teacher - Teachoo Black, at only β‚Ή83 per month


Transcript

Example 7 Find the area lying above x-axis and included between the circle π‘₯2 +𝑦2=8π‘₯ and inside of the parabola 𝑦2=4π‘₯ Since equation of circle is of form (π‘₯βˆ’π‘Ž)^2+(π‘¦βˆ’π‘)^2=π‘Ÿ^2 , We convert our equation π‘₯^2+𝑦^2=8π‘₯ π‘₯^2βˆ’8π‘₯+𝑦^2=0 π‘₯^2βˆ’2 Γ—4 Γ—π‘₯+𝑦^2=0 π‘₯^2βˆ’2 Γ—4 Γ—π‘₯+4^2βˆ’4^2+𝑦^2=0 (π‘₯βˆ’4)^2+𝑦^2=4^2 So, Circle has center (4 , 0) & Radius =4 We need to find Area OPQC Point P is point of intersection of circle and parabola Finding Point P Equation of circle is π‘₯^2+𝑦^2=8π‘₯ Putting 𝑦^2=4π‘₯ π‘₯^2+4π‘₯=8π‘₯ π‘₯^2=8π‘₯βˆ’4π‘₯ π‘₯^2=4π‘₯ π‘₯^2βˆ’4π‘₯=0 π‘₯(π‘₯βˆ’4)=0 So, π‘₯=0 & π‘₯=4 For 𝒙 = 0 𝑦^2=4π‘₯=4 Γ— 0=0 𝑦=0 So, point is (0, 0) For 𝒙 = 4 𝑦^2=4π‘₯=4 Γ—4=4^2 𝑦=4 So, point is (4, 4) So, π‘₯=0 & π‘₯=4 Since point P is in 1st quadrant, Coordinates of P = (4, 4) Note that π‘₯-coordinate same as that of center (4, 0) ∴ P lies above point C So, we need to change the figure New figure Area Required Area Required = Area OPC + Area PCQ Area OPC Area OPC = ∫_0^4▒〖𝑦 𝑑π‘₯γ€— Here, y β†’ Equation of parabola y2 = 4x y = Β± √4π‘₯ y = Β± 2√π‘₯ Since OPC is in 1st quadrant, value of y is positive y = 2√π‘₯ ∴ Area OPC = ∫_0^4β–’γ€–2√π‘₯γ€— 𝑑π‘₯ = 2 ∫_0^4β–’π‘₯^(1/2) 𝑑π‘₯ = 2 [π‘₯^(1/2 + 1)/(1/2 + 1)]_0^4 = 2 [π‘₯^(3/2)/(3/2)]_0^4 = 2 Γ— 2/3 [(4)^(3/2)βˆ’(0)^(3/2) ] = 4/3 [8βˆ’0] = 32/3 Area PCQ Area PCQ = ∫_4^8▒〖𝑦 𝑑π‘₯γ€— Here, y β†’ Equation of circle x2 + y2 = 8x y2 = 8x – x2 y = Β± √(8π‘₯βˆ’π‘₯^2 ) Since PCQ is in 1st quadrant, value of y is positive y = √(8π‘₯βˆ’π‘₯^2 ) ∴ Area PCQ = ∫_4^8β–’βˆš(8π‘₯βˆ’π‘₯^2 ) 𝑑π‘₯ = ∫_4^8β–’βˆš(βˆ’(π‘₯^2βˆ’8π‘₯)) 𝑑π‘₯ = ∫_4^8β–’βˆš(βˆ’(π‘₯^2βˆ’8π‘₯+16βˆ’16)) 𝑑π‘₯ = ∫_4^8β–’βˆš(βˆ’(π‘₯^2βˆ’8π‘₯+16)βˆ’(βˆ’16)) 𝑑π‘₯ = ∫_4^8β–’βˆš(16βˆ’(π‘₯^2βˆ’8π‘₯+16)) 𝑑π‘₯ = ∫_4^8β–’βˆš(16βˆ’(π‘₯βˆ’4)^2 ) 𝑑π‘₯ = ∫_4^8β–’βˆš(4^2βˆ’(π‘₯βˆ’4)^2 ) 𝑑π‘₯ = [((π‘₯ βˆ’ 4))/2 √(4^2βˆ’γ€–(π‘₯βˆ’4)γ€—^2 )+4^2/2 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 ((π‘₯ βˆ’ 4))/4γ€— " " ]_4^8 It is of form √(π‘Ž^2βˆ’π‘₯^2 ) 𝑑π‘₯=π‘₯/2 √(π‘Ž^2βˆ’π‘₯^2 )+π‘Ž^2/2 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 π‘₯/π‘Ž+𝑐〗 Here, a = 4, x = x – 4 = [((π‘₯ βˆ’ 4))/2 √(16βˆ’(π‘₯^2βˆ’8π‘₯+4^2))+16/2 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 ((π‘₯ βˆ’ 4))/4γ€— " " ]_4^8 = [((π‘₯ βˆ’ 4))/2 √(βˆ’(π‘₯^2βˆ’8π‘₯))+8 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 ((π‘₯ βˆ’ 4))/4γ€— " " ]_4^8 = [((8 βˆ’ 4))/2 √(βˆ’(8^2βˆ’8(8)))+8 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 ((8 βˆ’ 4))/4γ€— ] – [((4 βˆ’ 4))/2 √(βˆ’(4^2βˆ’8(4)))+8 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 ((4 βˆ’ 4))/4γ€— ] = [4/2 √0+8 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 1γ€— ] – [0+8 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 0γ€— ] = 8 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 1γ€— – 8 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 0γ€— = 8(πœ‹/2) – 8 Γ— 0 = 4πœ‹ As 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 1γ€— = πœ‹/2 & 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 0γ€— = 0 Thus, Area Required = Area OPC + Area PCQ = 32/3 + 4πœ‹ = πŸ’/πŸ‘ (8 + 3𝝅) square units

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.