Check sibling questions



This video is only available for Teachoo black users

Introducing your new favourite teacher - Teachoo Black, at only β‚Ή83 per month


Ex 8.1, 1 Find the area of the region bounded by the curve 𝑦2 = π‘₯ and the lines π‘₯ = 1, π‘₯ = 4 and the π‘₯-axis in ο»Ώthe first quadrant.Let AB represent line π‘₯=1 CD represent line π‘₯=4 & CBOAD represent the curve 𝑦^2=π‘₯ Since we need area in the first quadrant We have to find area of BCFE Area of BCFE = ∫_𝟏^πŸ’β–’π’š . 𝒅𝒙 So, we need to calculate ∫_𝟏^πŸ’β–’π’š . 𝒅𝒙 We know that 𝑦^2=π‘₯ Taking square root on both sides ∴ 𝑦=±√π‘₯ Since BCEF is in 1st Quadrant ∴ π’š=βˆšπ’™ Area of BCFE = ∫_1^4▒𝑦 . 𝑑π‘₯ = ∫_𝟏^πŸ’β–’βˆšπ’™ . 𝒅𝒙 = ∫_1^4β–’γ€–(π‘₯)^(1/2) 𝑑π‘₯γ€— = [π‘₯^(1/2+1)/(1/2 +1)]_1^4 = [ π‘₯^(3/2)/(3/2) ]_1^4 = 𝟐/πŸ‘ [𝒙^(πŸ‘/𝟐) ]_𝟏^πŸ’ = 2/3 {(4)^(3/2)βˆ’(1)^(3/2) } = 2/3 {[(4)^(1/2) ]^3βˆ’1} = 𝟐/πŸ‘ {(𝟐)^πŸ‘βˆ’πŸ} = 2/3 [8βˆ’1] = 2/3 Γ— 7 = 14/3 ∴ Thus Required Area = πŸπŸ’/πŸ‘ square units

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.