Check sibling questions

Ex 4.2, 14 - Using properties |a2+1 ab| = 1 + a2 + b2 + c2

Ex 4.2, 14 - Chapter 4 Class 12 Determinants - Part 2
Ex 4.2, 14 - Chapter 4 Class 12 Determinants - Part 3 Ex 4.2, 14 - Chapter 4 Class 12 Determinants - Part 4 Ex 4.2, 14 - Chapter 4 Class 12 Determinants - Part 5

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Question 14 By using properties of determinants, show that: |β– 8(a2+1&ab&[email protected]&b2+1&[email protected]&cb&c2+1)| = 1 + a2 + b2 + c2 Solving L.H.S |β– 8(a2+1&ab&[email protected]&b2+1&[email protected]&cb&c2+1)| Multiplying & Dividing by abc = 𝒂𝒃𝒄/𝒂𝒃𝒄 |β– 8(a2+1&ab&[email protected]&b2+1&[email protected]&cb&c2+1)| Multiplying 1st row by a, 2nd row by b & 3rd row by c ( R1 β†’ aR1 , R2 β†’ bR3 , R3 β†’ bR3 ) = 1/π‘Žπ‘π‘ |β– 8(𝒂(a2+1)&𝒂(ab)&𝒂(ac)@𝒃(ab)&𝐛(b2+1)&𝒃(bc)@𝐜(ca)&𝒄(cb)&𝐜(c2+1))| = 1/π‘Žπ‘π‘ |β– 8(a3+a&π‘Ž2b&π‘Ž[email protected]&b3+b&𝑏[email protected]&𝑐2b&c3+c)| Applying R1 β†’ R1 + R2 + R3 = 1/π‘Žπ‘π‘ |β– 8(a3+a+π‘Žπ‘2+𝑐2π‘Ž&π‘Ž2b+b3+b+c2b&π‘Ž[email protected]&b3+b&𝑏[email protected]&𝑐2b&c3+c)| = 1/π‘Žπ‘π‘ |β– 8(a(𝐚𝟐+𝟏+π’ƒπŸ+π’„πŸ)&𝑏(π’‚πŸ+π›πŸ+𝟏+𝐜𝟐)&𝑐(π’‚πŸ+π›πŸ+𝐜𝟐"+1" )@ab2&b3+b&𝑏[email protected]&𝑐2b&c3+c)| Taking (1+π‘Ž2+𝑏2+𝑐2) common from 1st Row = ((𝟏 + π’‚πŸ + π’ƒπŸ + π’„πŸ))/π‘Žπ‘π‘ |β– 8(a&𝑏&𝑐@ab2&b3+b&𝑏[email protected]&𝑐2b&c(c3+1))| Taking a common from C1 ,b from C2 & c from C3 . = 𝒂𝒃𝒄 ( (1 + π‘Ž2 + 𝑏2 + 𝑐2))/π‘Žπ‘π‘ |β– 8(1&1&[email protected]&b3+1&𝑏[email protected]&𝑐2&c2+1)| Applying C1 β†’ C1 βˆ’ C2 = (1+π‘Ž2+𝑏2+𝑐2) |β– 8(πŸβˆ’πŸ&1&[email protected]βˆ’π‘2βˆ’1&b2+1&𝑏[email protected]βˆ’c2&𝑐2&c2+1)| = (1+π‘Ž2+𝑏2+𝑐2) |β– 8(𝟎&1&1@βˆ’1&b2+1&𝑏[email protected]&𝑐2&c2+1)| Applying C2 β†’ C2 βˆ’ C3 = (1+π‘Ž2+𝑏2+𝑐2) |β– 8(0&πŸβˆ’πŸ&1@βˆ’1&b2+1βˆ’π‘2&𝑏[email protected]&𝑐2βˆ’π‘2βˆ’1&c2+1)| = (1+π‘Ž2+𝑏2+𝑐2) |β– 8(0&𝟎&1@βˆ’1&1&𝑏[email protected]&βˆ’1&c2+1)| Expanding along R1 = (1+π‘Ž2+𝑏2+𝑐2)(1|β– 8(1&𝑏2@βˆ’1&𝑐2+1)|" – 0" |β– 8(βˆ’1&𝐢[email protected]&𝑐2+1)|" + 0" |β– 8(1&[email protected]&βˆ’1)|) = (1 + a2 + b1 + c2) (0 – 0 + 1) = (1 + a2 + b1 + c2) (1) = (1 + a2 + b1 + c2) = R.H.S Hence proved

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.