Check sibling questions

Ex 4.1, 4 - Show that  |3A|  = 27|A|, if A =  [1 0 1 - Ex 4.1

Ex 4.1, 4 - Chapter 4 Class 12 Determinants - Part 2
Ex 4.1, 4 - Chapter 4 Class 12 Determinants - Part 3

Get Real time Doubt solving from 8pm to 12 am!


Transcript

Ex 4.1, 4 If A = [■8(1&0&[email protected]&1&[email protected]&0&4)] , then show that |3A| = 27 |A| We have to prove |3A| = 27 |A| Taking L.H.S |3A| First Calculating 3A 3A = 3 [■8(1&0&[email protected]&1&[email protected]&0&4)] = [■8(3 × 1&3 × 0&3 × [email protected] × 0&3 × 1&3 × [email protected] × 0&3 × 0&3 × 4)] = [■8(3&0&[email protected]&3&[email protected]&0&12)] And |3A| = |■8(3&0&[email protected]&3&[email protected]&0&12)| = 3 |■8(3&[email protected]&12)| – 0 |■8(0&[email protected]&12)| + 3 |■8(0&[email protected]&0)| = 3(3(12)– 0(6)) – 0 (0(12) – 0(6)) +3 (0(0) – 0(3) = 3(36 – 0) – 0(0) + 3(0) = 3(36) + 0 + 0 = 108 Taking R.H.S 27|A| |A| = [■8(1&0&[email protected]&1&[email protected]&0&4)] = 1 |■8(1&[email protected]&4)| – 0 |■8(0&[email protected]&4)| + 1 |■8(0&[email protected]&0)| = 1(1(4) – 0(2)) – 0 (0(4) – 0(2)) + 1(0 – 0(1)) = 1 (4 – 0) – 0 (0) + 1(0) = 4 Now, 27|A| = 27 (4) = 108 = |3A| Hence L.H.S = R.H.S Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.