Check sibling questions

Example 16 - Find A(BC), (AB) C, show that (AB) C = A (BC)

Example 16 - Chapter 3 Class 12 Matrices - Part 2
Example 16 - Chapter 3 Class 12 Matrices - Part 3 Example 16 - Chapter 3 Class 12 Matrices - Part 4

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Example 16 If A = [■8(1&1&−[email protected]&0&[email protected]&−1&2)], B = [■8(1&[email protected]&2@−1&4)] and C = [■8(1&2&3&−[email protected]&0&−2&1)], find A(BC), (AB) C and show that (AB) C = A (BC) For A (BC) First Calculating BC BC = [■8(1&[email protected]&2@−1&4)]_(3 × 2) [■8(1&2&3&−[email protected]&0&−2&1)]_(2 × 4) = [■8(1(1)+3(2)&1(2)+3(0)&1(3)+3(−2)&1(−4)+3(1)@0(1)+2(2)&0(2)+2(0)&0(3)+2(−2)&0(−4)+2(1)@−1(1)+4(2)&−1(2)+4(0)&−1(3)+4(−2)&−1 (−4)+4(1))]_(3 × 4) = [■8(1+6&2+0&3−6&−[email protected]+4&0+0&0−4&0+2@−1+8&−2+0&−3−8&4+4)] = [■8(7&2&−3&−[email protected]&0&−4&[email protected]&−2&−11&8)] Now, Calculating A (BC) A (BC) = [■8(1&1&−[email protected]&0&[email protected]&−1&2)]_(3×3) [■8(7&2&−3&−[email protected]&0&−4&[email protected]&−2&−11&8)]_(3×4) = [■8(1(7)+1(4)+(−1)(7)&1(2)+1(0)+(−1)(−2)&1×(−3)+1×(−4)+(−1)×(−11)&1(−1)+1(2)+(−1)(8)@2(7)+0(4)+3(7)&2(2)+0(0)+3(−2)&2×(−3)+0×(−4)+3×(−11)&2(−1)+0(2)+3(8)@3(7)+(−1)(4)+2(7)&3(2)+(−1)(0)+2(−2)&3×(−3)+(−1)×(−4)+2×(−11)&3(−1)+(−1)(2)+2(8))]_(3×4) = [■8(7+4−7&2+0+2&−3−4+11&−1+2−[email protected]+0+21&4+0−6&−6+0−33&−[email protected]−4+14&6+0−4&−9+4−22&−3−2+16)] = [■8(4&4&4&−[email protected]&−2&−39&[email protected]&2&−27&11)] For (AB) C First calculating (AB) AB = [■8(1&1&−[email protected]&0&[email protected]&−1&2)]_(3 × 3) [■8(1&[email protected]&2@−1&4)]_(3 × 2) = [■8(1(1)+1(0)+(−1)(−1)&1(3)+1(2)+(−1)(4)@2(1)+0(0)+3(−1)&2(3)+0(2)+3(4)@3(1)+(−1)(0)+2(−1)&3(3)+(−1)(2)+2(4))]_(3 × 4) = [■8(1+0+1&3+2−[email protected]+0−3&[email protected]+0−2&9−2+8)] = [■8(2&1@−1&[email protected]&15)] Now, calculating (AB)C (AB)C = [■8(2&1@−1&[email protected]&15)]_(3×2) [■8(1&2&3&−[email protected]&0&−2&1)]_(2×4) = [■8(2(1)+1(2)&2(2)+1(0)&2(3)+1(−2)&2(−4)+1(1)@−1(1)+18(2)&−1(2)+18(0)&−1(3)+18(−2)&−1(−4)+18(1)@1(1)+15(2)&1(2)+15(0)&1(3)+15(−2)&1(−4)+15(1) )]_(3×4) = [■8(2+2&4+0&6−2&−8+1@−1+36&−2+0&−3−36&[email protected]+30&2+0&3−30&−4+15)] = [■8(4&4&4&−[email protected]&−2&−39&[email protected]&2&−27&11)] = A(BC) ∴ (AB) C = A (BC) Hence proved

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.