Check sibling questions

Ex 3.2, 14 - Show that (i) [5 -1 6 7] [2 1 3 4] - Matrices

Ex 3.2, 14 - Chapter 3 Class 12 Matrices - Part 2
Ex 3.2, 14 (ii).jpg   Ex 3.2, 14 - Chapter 3 Class 12 Matrices - Part 4

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Ex 3.2, 14 Show that (i) [■8(5&−[email protected]&7)] [■8(2&[email protected]&4)] ≠ [■8(2&[email protected]&4)] [■8(5&−[email protected]&7)] Taking L.H.S [■8(5&−[email protected]&7)]_(2 × 2) [■8(2&[email protected]&4)]_(2 × 2) = [■8(5 × 2+(−1) × 3&5 × 1+(−1)× [email protected] × 2+7 × 3&6 × 1+7 × 4)]_(2 × 2) = [■8(10−3&5−[email protected]+21&6+28) ] = [■8(7&[email protected]&34)] Taking R.H.S [■8(2&[email protected]&4)]_(2 × 2) [■8(5&−[email protected]&7)]_(2 × 2) = [■8(2 × 5+1 × 6&2 × (−1)+1 × [email protected] × 5+4 × 6&3 × (−1)+4 × 7)]_(2 × 2) = [■8(10+6&−[email protected]+24&−3+28)] = [■8(16&[email protected]&25)] ≠ L.H.S Thus, L.H.S. ≠ R.H.S. Hence proved. Ex 3.2, 14 Show that (ii) [■8(1&2&[email protected]&1&[email protected]&1&0)][■8(−1&1&[email protected]&−1&[email protected]&3&4)] ≠[■8(−1&1&[email protected]&−1&[email protected]&3&4)][■8(1&2&[email protected]&1&[email protected]&1&0)] Taking L.H.S. [■8(1&2&[email protected]&1&[email protected]&1&0)]_(3 × 3) [■8(−1&1&[email protected]&−1&[email protected]&3&4)]_(3 × 3) = [■8(1×(⤶7−1)+2×0+3×2&1×1+2×(−1)+3×3&1×0+2×1+3×[email protected]×(⤶7−1)+1×0+0×2&0×1+1×(⤶7−1)+0×3&0×0+1×1+0×[email protected]×(⤶7−1)+1×0+0×2&1×1+1×(⤶7−1)+0×3&1×0+1×1+0×4)]_(3×3) = [■8(−1+0+6&1−2+9&[email protected]+0+0&0−1+0&0+1+0@−1+0+0&1−1+0&0+1+0)] = [■8(5&8&[email protected]&−1&1@−1&−1&1)] Taking R.H.S [■8(−1&1&[email protected]&−1&[email protected]&3&4)]_(3 × 3) [■8(1&2&[email protected]&1&[email protected]&1&0)]_(3 × 3) = [■8(−1×1+1×0+0×1&−1×2+1×1+0×1&−1×3+1×0+0×[email protected]×1+(−1)×0+1×1&0×2+(⤶7−1)×1+1×1&0×3+(−1)×0+1×[email protected]×1+(3)×0+4×1&2×2+3×1+4×1&2×3+(3)×0+4×0)]_(3×3) = [■8(−1+0+0&−2+1+0&−[email protected]+0+1&0−1+1&[email protected]+0+4&4+3+4&6+0+0)] = [■8(−1&−1&−[email protected]&0&[email protected]&11&6)] ≠ L.H.S ∴ L.H.S. ≠ R.H.S Hence proved

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.