


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Multiplication of matrices
Multiplication of matrices
Last updated at May 29, 2023 by Teachoo
Ex 3.2, 13 If F (x) = [■8(cos𝑥&〖−sin〗𝑥&[email protected]𝑥&cos𝑥&[email protected]&0&1)] , Show that F(x) F(y) = F(x + y) We need to show F(x) F(y) = F(x + y) Taking L.H.S. Given F(x) = [■8(cos𝑥&〖−sin〗𝑥&[email protected]𝑥&cos𝑥&[email protected]&0&1)] Finding F(y) Replacing x by y in F(x) F(y) = [■8(cos𝑦&〖−sin〗𝑦&[email protected]𝑦&cos𝑦&[email protected]&0&1)] Now, F(x) F(y) = [■8(cos𝑥&〖−sin〗𝑥&[email protected]𝑥&cos𝑥&[email protected]&0&1)] [■8(cos𝑦&〖−sin〗𝑦&[email protected]𝑦&cos𝑦&[email protected]&0&1)] = [■8(cos𝑥 cos𝑦+(〖−sin〗𝑥 ) sin〖𝑦+0 〗 &cos〖𝑥(−sin〖𝑦)+(−sin〖𝑥)〖cos y〗〖+ 0〗 〗 〗 〗&0+0+0×[email protected]〖𝑥 cos〖𝑦+cos〖𝑥 sin〖𝑦+0〗 〗 〗 〗&sin𝑥 (−sin〖𝑦)+〗 cos〖𝑥 cos〖𝑦+0〗 〗&0+0+0×[email protected]×cos〖𝑦 +0×sin〖𝑦+0×1〗 〗&0×(−sin〖𝑦)+0×cos〖𝑦+0〗 〗&0+0+1×1)] = [■8(cos𝑥 cos𝑦 〖−sin〗𝑥.sin〖𝑦 〗 &〖−cos〗〖𝑥 sin〖𝑦−sin〖𝑥 cos𝑦 〗 〗 〗&[email protected]〖𝑥 cos〖𝑦+cos〖𝑥 sin𝑦 〗 〗 〗&−sin𝑥 sin〖𝑦+〗 cos〖𝑥 cos𝑦 〗&[email protected]&0&1)] We know that cos x cos y – sin x sin y = cos (x + y) & sin x cos y + cos x sin y = sin (x + y) = [■8(cos〖(𝑥+𝑦)〗 &〖−[cos〗〖𝑥 sin〖𝑦+sin〖𝑥 cos〖𝑦]〗 〗 〗 〗&[email protected]〖(𝑥+𝑦)〗&cos𝑥 cos〖𝑦 −〗 sin〖𝑥 sin𝑦 〗&[email protected]&0&1)] = [■8(cos〖(𝑥+𝑦)〗 &−sin〖(𝑥+𝑦)〗&[email protected]〖(𝑥+𝑦)〗&cos〖(𝑥+𝑦)〗&[email protected]&0&1)] Taking R.H.S F(x + y) Replacing x by (x + y) in F(x) = [■8(cos〖(𝑥+𝑦)〗 &−sin〖(𝑥+𝑦)〗&[email protected]〖(𝑥+𝑦)〗&cos〖(𝑥+𝑦)〗&[email protected]&0&1)] = L.H.S. Hence proved