Ex 3.4, 15 - Find inverse [2 -3 3 3 2 3 3 -2 2] - Chapter 3 NCERT - Inverse of matrix using elementary transformation

  1. Class 12
  2. Important Question for exams Class 12
Ask Download

Transcript

Ex3.4, 15 Find the inverse of each of the matrices, if it exists. [■8(2&−3&3@2&2&3@3&−2&2)] Let A =[■8(2&−3&3@2&2&3@3&−2&2)] We know that A = IA [■8(2&−3&3@2&2&3@3&−2&2)]= [■8(1&0&0@0&1&0@0&0&1)] A R1 →R_1/2 , [■8(𝟐/𝟐&(−3)/2&3/2@2&2&3@3&−2&2)]= [■8(1/2&0/2&0/2@0&1&0@0&0&1)] A [■8(𝟏&(−3)/2&3/2@2&2&3@3&−2&2)]= [■8(1/2&0&0@0&1&0@0&0&1)] A R2 → R2 – 2R1 [■8(1&(−3)/2&3/2@𝟐−𝟐(𝟏)&2−2((−3)/2)&3−2(3/2)@3&−2&2)] = [■8(1/2&0&0@0−2(1/2)&1−2(0)&0−2(0)@0&0&1)] A [■8(1&(−3)/2&3/2@𝟎&5&0@3&−2&2)] = [■8(1/2&0&0@−1&1&0@0&0&1)] A R3 → R3 – 3R1 [■8(1&(−3)/2&3/2@0&5&0@𝟑−𝟑(𝟏)&−2−3((−3)/2)&2−3(3/2) )]= [■8(1/2&0&0@−1&1&0@0−3(1/2)&0−3(0)&1−3(0))] A [■8(1&(−3)/2&3/2@0&5&0@𝟎&5/2&(−5)/2)]= [■8(1/2&0&0@−1&1&0@(−3)/2&0&1)] A R2 →R_2/5 , [■8(1&(−3)/2&3/2@0&𝟓/𝟓&0@0&5/2&(−5)/2)] = [■8(1/2&0&0@(−1)/5&1/5&0@(−3)/2&0&1)] A [■8(1&(−3)/2&3/2@0&𝟏&0@0&5/2&(−5)/2)] = [■8(1/2&0&0@(−1)/5&1/5&0@(−3)/2&0&1)] A R1 → R1 + 3/2 R2 [■8(1+3/2(0)&(−𝟑)/𝟐+𝟏(𝟑/𝟐)&3/2+3/2(0)@0&1&0@0&5/2&(−5)/2)]= [■8(1/2+3/2 ((−1)/5)&0+3/2 (1/5)&0+3/2(0)@(−1)/5&1/5&0@(−3)/2&0&1)] A [■8(1&𝟎&3/2@0&1&0@0&5/2&(−5)/2)]= [■8(2/10&3/10&0@(−1)/5&1/5&0@(−3)/2&0&1)] A R3 → R3 – 5/2 R2 [■8(1&0&3/2@0&1&0@0−5/2(0)&𝟓/𝟐−𝟓/𝟐(𝟏)&(−5)/2−(−5)/2(0))]= [■8(1/5&3/10&0@(−1)/5&1/5&0@(−3)/2−5/2 (−1/2)&0 (−5)/2 (1/5)&1 (−5)/2(0))] A [■8(1&0&3/2@0&1&0@0&𝟎&(−5)/2)] = [■8(1/5&3/10&0@(−1)/5&1/5&0@1&(−1)/2&1)] A R3 → (−2)/5 R3 [■8(1&0&3/2@0&1&0@0((−2)/5)&0(−2/5)&(−𝟓)/𝟐 ((−𝟐)/𝟓) )]= [■8(1/5&3/10&0@(−1)/5&1/5&0@1((−2)/5)&(−1)/2 ((−2)/5)&1((−2)/5) )] A [■8(1&0&3/2@0&1&0@0&0&𝟏)] = [■8(1/5&3/10&0@(−1)/5&1/5&0@(−2)/5&1/5&(−2)/5)] A R1 → R1 −3/2 R3 [■8(1−3/2(0)&0−3/2(0)&𝟑/𝟐−𝟑/𝟐(𝟏)@0&1&0@0&0&1)]= [■8(1/5−3/2 (2/5)&3/10−3/2 (1/5)&0−3/2 ((−2)/5)@(−1)/5&1/5&0@2/5&1/5&(−2)/5)] A [■8(1&0&𝟎@0&1&0@0&0&1)] = [■8((−2)/5&0&3/5@(−1)/5&1/5&0@2/5&1/5&(−2)/5)] A I = [■8((−2)/5&0&3/5@(−1)/5&1/5&0@2/5&1/5&(−2)/5)] A This is similar to I = A-1A Thus, A-1 =[■8((−2)/5&0&3/5@(−1)/5&1/5&0@2/5&1/5&(−2)/5)]

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.