Slide53.JPG

Slide54.JPG
Slide55.JPG Slide56.JPG

  1. Chapter 13 Class 11 Limits and Derivatives
  2. Serial order wise

Transcript

Misc 17 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sin⁡〖x + cos⁡x 〗/sin⁡〖x − cos⁡x 〗 Let f (x) = sin⁡〖x + cos⁡x 〗/sin⁡〖x − cos⁡x 〗 Let u = sin x + cos x & v = sin x – cos x ∴ f(x) = 𝑢/𝑣 So, f’(x) = (𝑢/𝑣)^′ Using quotient rule f’(x) = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 Finding u’ & v’ u = sin x + cos x u’ = (sin x + cos x)’ = (sin x)’ + (cos x)’ = cos x – sin x v = sin x – cos x v’= (sin x – cos x)’ = (sin x)’ – (cos x)’ = cos x – ( – sin x) = cos x + sin x Derivative of sin x = cos x Derivative of cos x = – sin x Now, f’(x) = (𝑢/𝑣)^′ = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 = ( (cos⁡〖𝑥 −〖 sin〗⁡〖𝑥) (sin⁡〖𝑥 −〖 cos〗⁡〖𝑥) − (cos⁡〖𝑥 +〖 sin〗⁡〖𝑥) (sin⁡〖𝑥 +〖 cos〗⁡〖𝑥)〗 〗 〗 〗 〗 〗 〗 〗)/〖(sin⁡〖x −co𝑠 𝑥〗)〗^2 = (−(sin⁡〖𝑥 −〖 cos〗⁡〖𝑥) (sin⁡〖𝑥 −〖 cos〗⁡〖𝑥) − (sin⁡〖𝑥 + cos⁡〖𝑥) (sin⁡〖𝑥 +〖 cos〗⁡〖𝑥)〗 〗 〗 〗 〗 〗 〗 〗)/〖(sin⁡〖x − co𝑠 𝑥〗)〗^2 = (〖−(sin⁡〖x − co𝑠 𝑥〗)〗^2 − 〖(sin⁡〖x + co𝑠 𝑥〗)〗^2)/〖(sin⁡〖x − co𝑠 𝑥〗)〗^2 Using (a + b)2 = a2 + b2 + 2ab (a – b)2 = a2 + b2 – 2ab = ( − [(sin2⁡〖𝑥 +〖 cos2〗⁡〖𝑥 − 2 sin⁡〖𝑥 〖 cos〗⁡〖𝑥) + (𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 + 2𝑠𝑖𝑛𝑥 cos⁡〖𝑥)]〗 〗 〗 〗 〗)/〖(sin⁡〖x − co𝑠 𝑥〗)〗^2 = ( − ( 2𝑠𝑖𝑛2𝑥 + 2𝑐𝑜𝑠2𝑥 − 0))/〖(sin⁡〖x − co𝑠 𝑥〗)〗^2 = ( −2 (𝒔𝒊𝒏𝟐𝒙 + 𝒄𝒐𝒔𝟐𝒙))/〖(sin⁡〖x − co𝑠 𝑥〗)〗^2 = ( −2 (𝟏))/〖(sin⁡〖x − co𝑠 𝑥〗)〗^2 = ( −𝟐 )/〖(𝒔𝒊𝒏⁡〖𝐱 − 𝒄𝒐𝒔 𝒙〗)〗^𝟐 (Using sin 2 x + cos 2 x = 1)

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.