Check sibling questions

Misc 1 - Chapter 13 Class 11 Limits and Derivatives - Part 3

Misc 1 - Chapter 13 Class 11 Limits and Derivatives - Part 4
Misc 1 - Chapter 13 Class 11 Limits and Derivatives - Part 5

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!


Transcript

Misc 1 Find the derivative of the following functions from first principle: (ii) (βˆ’π‘₯)^(βˆ’1) Let f (x) = (βˆ’π‘₯)^(βˆ’1) We need to find Derivative of f(x) i.e. f’ (x) We know that f’(x) = lim┬(hβ†’0) f⁑〖(x + h) βˆ’ f(x)γ€—/h Here, f (x) = (βˆ’π‘₯)^(βˆ’1) So, f (x + h) = (βˆ’(π‘₯+β„Ž))^(βˆ’1) Putting values f’(x) = lim┬(hβ†’0)⁑〖(γ€–(βˆ’(π‘₯ + β„Ž)) γ€—^(βˆ’1) γ€–βˆ’ (βˆ’ π‘₯)γ€—^(βˆ’1))/β„Žγ€— = lim┬(hβ†’0)⁑〖((1/(βˆ’(π‘₯ + β„Ž))) βˆ’(1/(βˆ’π‘₯)))/β„Žγ€— = lim┬(hβ†’0)⁑〖((βˆ’1)/(π‘₯ + β„Ž) + 1/π‘₯)/β„Žγ€— = lim┬(hβ†’0)⁑〖((βˆ’ π‘₯ + π‘₯ + β„Ž)/(π‘₯ (π‘₯ + β„Ž) ))/β„Žγ€— = lim┬(hβ†’0)⁑〖(βˆ’ π‘₯ + π‘₯ + β„Ž)/(β„Žπ‘₯ (π‘₯ + β„Ž))γ€— = lim┬(hβ†’0)β‘γ€–β„Ž/(β„Žπ‘₯ (π‘₯ + β„Ž))γ€— = lim┬(hβ†’0)⁑〖1/(π‘₯ (π‘₯ + β„Ž))γ€— Putting h = 0 = 1/(π‘₯ (π‘₯ + 0)) = 𝟏/π’™πŸ

Ask a doubt (live)
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.