Check sibling questions

Misc 1 - Chapter 13 Class 11 Limits and Derivatives - Part 6

Misc 1 - Chapter 13 Class 11 Limits and Derivatives - Part 7

Misc 1 - Chapter 13 Class 11 Limits and Derivatives - Part 8

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Misc 1 Find the derivative of the following functions from first principle: (iii) sin (x + 1) Let f (x) = sin (x + 1) We need to find Derivative of f(x) We know that f’(x) = lim┬(h→0) 𝑓⁡〖(𝑥 + ℎ) − 𝑓(𝑥)〗/ℎ Here, f (x) = sin (x + 1) So, f (x + h) = sin ((x + h) + 1) Putting values f’(x) = lim┬(h→0)⁡〖sin⁡〖(( 𝑥 + ℎ ) + 1 ) −〖 sin〗⁡〖 (𝑥 + 1)〗 〗/h〗 = lim┬(h→0)⁡〖(𝑠𝑖𝑛( 𝑥 + 1 + ℎ) −〖 sin〗⁡〖 ( 𝑥 + 1 )〗)/h〗 Using sin A – sin B = 2 cos ((𝐴 + 𝐵)/2) sin ((𝐴 − 𝐵)/2) = lim┬(h→0)⁡〖(2 cos⁡(( ( 𝑥 + 1 + ℎ ) + ( 𝑥 + 1))/2).sin⁡((( 𝑥 + 1 + ℎ ) − ( 𝑥 + 1 ))/2))/h〗 = lim┬(h→0)⁡〖(2 cos⁡〖(( 2(𝑥 + 1 )+ ℎ))/2〗 . 〖sin 〗⁡〖ℎ/2〗)/h〗 = lim┬(h→0)⁡〖(cos⁡〖(( 2(𝑥 + 1 )+ ℎ))/2〗 . 〖sin 〗⁡〖ℎ/2〗)/(ℎ/2)〗 = lim┬(h→0)⁡〖〖cos 〗⁡〖(( 2(𝑥 + 1 )+ ℎ))/2〗 . sin⁡〖 ℎ/2〗/(( ℎ)/2)〗 = lim┬(h→0)⁡〖cos 〗⁡〖(( 2(𝑥 + 1 )+ ℎ))/2〗 .(𝐥𝐢𝐦)┬(𝐡→𝟎) 𝒔𝒊𝒏⁡〖 𝒉/𝟐〗/(( 𝒉)/𝟐) = lim┬(h→0)⁡〖cos 〗⁡〖(( 2(𝑥 + 1 ) + ℎ))/2〗 .𝟏 = lim┬(h→0)⁡〖cos 〗⁡〖(( 2(𝑥 + 1 )+ ℎ))/2〗 Putting h = 0 =〖 cos 〗⁡〖(( 2(𝑥 + 1 ) + 0))/2〗 = cos ( x + 1) Hence f’ (x) = cos (x + 1) Using (𝑙𝑖𝑚)┬(𝑥→0)⁡〖 𝑠𝑖𝑛⁡𝑥/𝑥〗=1 Replacing x by ℎ/2 ⇒ (𝑙𝑖𝑚)┬(ℎ→0) 𝑠𝑖𝑛⁡〖 ℎ/2〗/(( ℎ)/2) = 1

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.