Misc 12 - Find derivative: (ax + b)n - Chapter 13 Class 11 - Derivatives by formula - x^n formula

Misc 12  - Chapter 13 Class 11 Limits and Derivatives - Part 2
Misc 12  - Chapter 13 Class 11 Limits and Derivatives - Part 3 Misc 12  - Chapter 13 Class 11 Limits and Derivatives - Part 4

This video is only available for Teachoo black users

Misc 12  - Chapter 13 Class 11 Limits and Derivatives - Part 5 Misc 12  - Chapter 13 Class 11 Limits and Derivatives - Part 6

This video is only available for Teachoo black users

This video is only available for Teachoo black users

This video is only available for Teachoo black users

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Misc 12 (Method 1) Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (ax + b)n Let f(x) = (ax + b)n. We know that f’(x) = lim﷮h→0﷯ f x + h﷯ − f(x)﷮h﷯ Here, f(x) = (ax + b)n So, f(x + h) = (a(x + h) + b)n Putting values f’(x) = lim﷮h→0﷯ 𝑎 𝑥+ℎ﷯+𝑏﷯𝑛 − 𝑎𝑥 + 𝑏﷯𝑛﷮h﷯ f’(x) = lim﷮h→0﷯ 𝑎 𝑥+ℎ﷯+𝑏﷯𝑛 − 𝑎𝑥 + 𝑏﷯𝑛﷮h﷯ = lim﷮h→0﷯ 𝑎𝑥 + 𝑎ℎ + 𝑏﷯𝑛 − 𝑎𝑥 + 𝑏﷯𝑛﷮h﷯ = lim﷮h→0﷯ 𝑎𝑥 + 𝑏﷯ + 𝑎ℎ﷯﷮𝑛﷯ − 𝑎𝑥 + 𝑏﷯𝑛﷮h﷯ = lim﷮h→0﷯ 𝑎𝑥 + 𝑏﷯ 1+ 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯﷯﷮𝑛﷯ − 𝑎𝑥 + 𝑏﷯𝑛﷮h﷯ = lim﷮h→0﷯ 𝑎𝑥 + 𝑏﷯﷮𝑛﷯ 𝟏+ 𝒂𝒉﷮𝒂𝒙 + 𝒃﷯﷯﷮𝒏﷯− 1﷯﷮h﷯ = lim﷮h→0﷯(ax + b)n 𝟏﷯﷮𝒏﷯ + 𝒏𝑪﷮𝟏﷯ 𝒂﷯﷮𝒏−𝟏﷯ 𝒂𝒉﷮𝒂𝒙 + 𝒃﷯﷯﷮𝟏﷯+ 𝒏𝑪﷮𝟐﷯ 𝟏﷯﷮𝒏−𝟐﷯ 𝒂𝒉﷮𝒂𝒙 + 𝒃﷯﷯﷮𝟐﷯+…. + 𝒂𝒉﷮𝒂𝒙 + 𝒃﷯﷯﷮𝒏﷯﷯ − 1﷯﷮h﷯ = lim﷮h→0﷯(ax + b)n 1+ 𝑛!﷮1! 𝑛 − 1﷯!﷯ 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯+ 𝑛𝐶﷮2﷯ 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯﷮2﷯+…. + 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯﷮𝑛﷯﷯−1﷯﷮h﷯ = lim﷮h→0﷯(ax + b)n 1 + 𝑛 . 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯+ 𝑛𝐶﷮2﷯ 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯﷮2﷯+…. + 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯﷮𝑛﷯﷯−1﷯﷮h﷯ = lim﷮h→0﷯(ax + b)n 1 − 1﷯ + 𝑛 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯+ 𝑛𝐶﷮2﷯ 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯﷮2﷯+…. + 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯﷮𝑛﷯﷯﷮h﷯ = lim﷮h→0﷯(ax + b)n 0 + 𝑛 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯+ 𝑛𝐶﷮2﷯ 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯﷮2﷯+…. + 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯﷮𝑛﷯﷯﷮h﷯ = lim﷮h→0﷯(ax + b)n 𝑎ℎ𝑛﷮𝑎𝑥 + 𝑏﷯﷯+ 𝑛𝐶﷮2﷯ 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯﷮2﷯+…. + 𝑎ℎ﷮𝑎𝑥 + 𝑏﷯﷯﷮𝑛﷯﷯﷮h﷯ = lim﷮h→0﷯(ax + b)n ℎ 𝑎𝑛﷮𝑎𝑥 + 𝑏﷯﷯+ 𝑛𝐶﷮2﷯ ℎ2 𝑎﷮𝑎𝑥 + 𝑏﷯﷯﷮2﷯+…. + ℎ﷮𝑛﷯ 𝑎﷮𝑎𝑥 + 𝑏﷯﷯﷮𝑛﷯﷯﷮h﷯ = lim﷮h→0﷯(ax + b)n ℎ 𝑎𝑛﷮𝑎𝑥 + 𝑏﷯﷯+ 𝑛𝐶﷮2﷯ ℎ 𝑎﷮𝑎𝑥 + 𝑏﷯﷯﷮2﷯+…. + ℎ﷮𝑛−1﷯ 𝑎﷮𝑎𝑥 + 𝑏﷯﷯﷮𝑛﷯﷯﷮h﷯ = lim﷮h→0﷯(ax + b)n 𝑎𝑛﷮𝑎𝑥 + 𝑏﷯﷯+ 𝑛𝐶﷮2﷯ ℎ 𝑎﷮𝑎𝑥 + 𝑏﷯﷯﷮2﷯+…. + ℎ﷮𝑛−1﷯ 𝑎﷮𝑎𝑥 + 𝑏﷯﷯﷮𝑛﷯﷯ Putting h = 0 = lim﷮h→0﷯(ax + b)n 𝑎𝑛﷮𝑎𝑥 + 𝑏﷯﷯+ 𝑛𝐶﷮2﷯ (0) 𝑎﷮𝑎𝑥 + 𝑏﷯﷯﷮2﷯+…. + (0)﷮𝑛−1﷯ 𝑎﷮𝑎𝑥 + 𝑏﷯﷯﷮𝑛﷯﷯ = (ax + b)n 𝑎𝑛﷮𝑎𝑥 + 𝑏﷯﷯+0+…+0﷯ = (ax + b)n . 𝑎𝑛﷮(𝑎𝑥 + 𝑏)﷯ = an (ax + b)n – 1 Hence f’ (x) = an (ax + b)n – 1 Misc12 (Method 2) Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (ax + b)n Let f(x) = (ax + b)n. Let p = (ax + b) So, f(x) = pn Now, f’(x) = (pn)’ f’(x) = npn–1 p’ Putting p = (ax + b) f’(x) = n (ax + b)n – 1 . (ax + b)’ f’(x) = n (ax + b)n – 1 . (ax + b)’ = n (ax + b)n – 1 [a . 1 . x1 – 1 + 0] = n (ax + b)n – 1 [a . 1 . x1 – 1 + 0] = n ( ax + b) n – 1 (ax0) = n (ax + b)n – 1 (a) = an (ax + b)n – 1

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.