Slide68.JPG

Slide69.JPG
Slide70.JPG

Slide71.JPG Slide72.JPG Slide73.JPG

 

Subscribe to our Youtube Channel - https://you.tube/teachoo

  1. Chapter 13 Class 11 Limits and Derivatives
  2. Serial order wise

Transcript

Example 20 Find the derivative of f(x) from the first principle, where f(x) is (i) sin x + cos x Given f (x) = sin x + cos x We need to find Derivative of f(x) We know that f’(x) = lim┬(hβ†’0) 𝑓⁑〖(π‘₯ + β„Ž) βˆ’ 𝑓(π‘₯)γ€—/β„Ž Here, f (x) = sin x + cos x f (x + h) = sin (x + h) + cos (x + h) Putting values f’(x) = lim┬(hβ†’0)⁑〖(sin⁑〖(π‘₯ + β„Ž)γ€— + cos⁑(π‘₯ + β„Ž) βˆ’ (sin⁑π‘₯ + cos⁑〖π‘₯)γ€—)/β„Žγ€— Using sin (A + B) = sin A cos B + cos A sin B & cos (A + B) = cos A cos B – sin A sin B = lim┬(hβ†’0)⁑〖sin⁑〖π‘₯ cosβ‘γ€–β„Ž +γ€– cos〗⁑〖π‘₯ sinβ‘γ€–β„Ž + cos⁑〖π‘₯ cosβ‘γ€–β„Ž βˆ’ sin⁑〖π‘₯ γ€– sinγ€—β‘γ€–β„Ž βˆ’γ€– sin〗⁑〖π‘₯ βˆ’γ€– cos〗⁑π‘₯ γ€— γ€— γ€— γ€— γ€— γ€— γ€— γ€— γ€—/hγ€— = lim┬(hβ†’0)⁑〖cos⁑〖π‘₯ sinβ‘γ€–β„Ž βˆ’γ€– sin〗⁑〖π‘₯ sinβ‘γ€–β„Ž + sin⁑〖π‘₯ cosβ‘γ€–β„Ž βˆ’ sin⁑〖π‘₯ +γ€– cos〗⁑〖π‘₯ cosβ‘γ€–β„Ž βˆ’γ€– cos〗⁑π‘₯ γ€— γ€— γ€— γ€— γ€— γ€— γ€— γ€— γ€—/hγ€— = lim┬(hβ†’0)⁑〖sinβ‘γ€–β„Ž γ€–(cos〗⁑〖π‘₯ βˆ’ sin⁑〖π‘₯) + sin⁑〖π‘₯ (cosβ‘γ€–β„Ž βˆ’ 1) + cos⁑π‘₯ (cosβ‘γ€–β„Ž βˆ’ 1)γ€— γ€— γ€— γ€— γ€— γ€—/hγ€— = lim┬(hβ†’0)⁑(sinβ‘γ€–β„Ž γ€–(cos〗⁑〖π‘₯ βˆ’ sin⁑〖π‘₯)γ€— γ€— γ€—/h+sin⁑〖π‘₯ (cosβ‘γ€–β„Ž βˆ’ 1)γ€— γ€—/h+cos⁑〖π‘₯ (cosβ‘γ€–β„Ž βˆ’ 1)γ€— γ€—/β„Ž)" " = lim┬(hβ†’0)⁑〖sinβ‘γ€–β„Ž γ€–(cos〗⁑〖π‘₯ βˆ’γ€– sin〗⁑〖π‘₯)γ€— γ€— γ€—/h+lim┬(hβ†’0) sin⁑〖π‘₯ (cosβ‘γ€–β„Ž βˆ’ 1)γ€— γ€—/h+lim┬(hβ†’0) cos⁑〖π‘₯ (cosβ‘γ€–β„Ž βˆ’ 1)γ€— γ€—/β„Žγ€— = lim┬(hβ†’0)⁑〖"(cos x – sin x)" sinβ‘β„Ž/β„Ž+lim┬(hβ†’0) "(– sin x)" ((1 βˆ’ cosβ‘γ€–β„Ž)γ€—)/β„Žγ€—+lim┬(hβ†’0) "(– cos x)" ((1 βˆ’ cosβ‘γ€–β„Ž)γ€—)/β„Ž = "(cos x – sin x)" (π₯𝐒𝐦)┬(π‘β†’πŸŽ)⁑〖𝐬𝐒𝐧⁑𝒉/π’‰βˆ’sin⁑〖π‘₯ (π₯𝐒𝐦)┬(π‘β†’πŸŽ) γ€— ((𝟏 βˆ’ 𝒄𝒐𝒔⁑〖𝒉)γ€—)/π’‰βˆ’cos⁑π‘₯ (π₯𝐒𝐦)┬(π‘β†’πŸŽ) ((𝟏 βˆ’ 𝒄𝒐𝒔⁑〖𝒉)γ€—)/𝒉〗Using (π‘™π‘–π‘š)┬(β„Žβ†’0) π‘ π‘–π‘›β‘β„Ž/β„Ž = 1 & (π‘™π‘–π‘š)┬(β„Žβ†’0) γ€–(1 βˆ’ π‘π‘œπ‘ γ€—β‘γ€–β„Ž)γ€—/β„Ž = 0 Using (π‘™π‘–π‘š)┬(β„Žβ†’0) π‘ π‘–π‘›β‘β„Ž/β„Ž = 1 & (π‘™π‘–π‘š)┬(β„Žβ†’0) γ€–(1 βˆ’ π‘π‘œπ‘ γ€—β‘γ€–β„Ž)γ€—/β„Ž = 0 Example 20 Find the derivative of f(x) from the first principle, where f(x) is (ii) x sin x Given f (x) = x sin x We need to find Derivative of f(x) We know that f’(x) = lim┬(hβ†’0) 𝑓⁑〖(π‘₯ + β„Ž) βˆ’ 𝑓(π‘₯)γ€—/β„Ž Here, f (x) = x sin x So, f (x + h) = (x + h) sin (x + h) Putting values f’(x) =lim┬(hβ†’0) ((π‘₯ + β„Ž) sin⁑〖 (π‘₯ + β„Ž) βˆ’ π‘₯ sin⁑〖π‘₯ γ€— γ€—)/β„Ž Using sin (A + B) = sin A cos B + cos A sin B = lim┬(hβ†’0)⁑〖((π‘₯ + β„Ž)(sin⁑〖π‘₯ cosβ‘γ€–β„Ž +γ€– cos π‘₯〗⁑sinβ‘γ€–β„Ž γ€— )γ€— βˆ’ π‘₯ sin⁑π‘₯ γ€—)/β„Žγ€— = lim┬(hβ†’0)⁑〖(π‘₯(sin⁑〖π‘₯ cosβ‘γ€–β„Ž +γ€– cos〗⁑〖π‘₯ sinβ‘γ€–β„Ž) + β„Ž (sin⁑〖π‘₯ cosβ‘γ€–β„Ž +γ€– cos〗⁑〖π‘₯ sinβ‘γ€–β„Ž) βˆ’ π‘₯ sin⁑π‘₯ γ€— γ€— γ€— γ€— γ€— γ€— γ€— γ€—)/β„Žγ€— = lim┬(hβ†’0)⁑〖(π‘₯ sin⁑〖π‘₯ cosβ‘γ€–β„Ž + π‘₯ cos⁑〖π‘₯ sinβ‘γ€–β„Ž + β„Ž γ€–(sin〗⁑〖π‘₯ cosβ‘γ€–β„Ž + cos⁑〖π‘₯ sinβ‘γ€–β„Ž) βˆ’ π‘₯ sin⁑π‘₯ γ€— γ€— γ€— γ€— γ€— γ€— γ€— γ€—)/β„Žγ€— = lim┬(hβ†’0)⁑〖(π‘₯𝑠𝑖𝑛 π‘₯ cosβ‘γ€–β„Ž βˆ’ π‘₯ sin⁑〖π‘₯ + π‘₯ cos⁑〖π‘₯ sinβ‘γ€–β„Ž + β„Ž(sin⁑〖π‘₯ cosβ‘γ€–β„Ž + cos⁑〖π‘₯ sinβ‘β„Ž γ€— γ€—)γ€— γ€— γ€— γ€— γ€—)/β„Žγ€— = lim┬(hβ†’0)⁑〖(π‘₯𝑠𝑖𝑛 π‘₯ γ€–(cosγ€—β‘γ€–β„Ž βˆ’ 1)+ π‘₯ cos⁑〖π‘₯ sinβ‘γ€–β„Ž + β„Ž(sin⁑〖π‘₯ cosβ‘γ€–β„Ž + cos⁑〖π‘₯ sinβ‘β„Ž γ€— γ€—)γ€— γ€— γ€— γ€—)/β„Žγ€— = lim┬(hβ†’0)⁑((π‘₯ sin⁑〖π‘₯ (cosβ‘γ€–β„Ž βˆ’1)γ€— γ€—)/β„Ž+(π‘₯ cos⁑〖π‘₯ sinβ‘β„Ž γ€—)/β„Ž+(β„Ž (sin⁑〖π‘₯ cosβ‘γ€–β„Ž +cos⁑〖π‘₯ sinβ‘γ€–β„Ž)γ€— γ€— γ€— γ€—)/β„Ž) = lim┬(hβ†’0)⁑〖〖x sin〗⁑〖π‘₯ (cosβ‘γ€–β„Ž βˆ’1)γ€— γ€—/β„Ž+lim┬(hβ†’0) (π‘₯ cos⁑〖π‘₯ sinβ‘β„Ž γ€— )/h+lim┬(hβ†’0) (sin⁑〖π‘₯ cosβ‘γ€–β„Ž +cos⁑〖π‘₯ sinβ‘γ€–β„Ž )γ€— γ€— γ€— γ€— γ€— = lim┬(hβ†’0)⁑〖π‘₯ sin⁑〖π‘₯ ((cosβ‘γ€–β„Ž βˆ’1)γ€—)/β„Žγ€—+lim┬(hβ†’0) π‘₯ cos⁑π‘₯ sinβ‘β„Ž/h+lim┬(hβ†’0) (sin⁑〖π‘₯ cosβ‘γ€–β„Ž +cos⁑〖π‘₯ sinβ‘γ€–β„Ž )γ€— γ€— γ€— γ€— γ€— = – x sin x (π₯𝐒𝐦)┬(π‘β†’πŸŽ) ((πŸβˆ’γ€– 𝒄𝒐𝒔〗⁑〖𝒉)γ€—)/𝒉+π‘₯ cos⁑〖π‘₯ (π₯𝐒𝐦)┬(π‘β†’πŸŽ) π’”π’Šπ’β‘π’‰/𝐑+γ€— lim┬(hβ†’0) (sin⁑〖π‘₯ cosβ‘γ€–β„Ž +cos⁑〖π‘₯ sinβ‘γ€–β„Ž )γ€— γ€— γ€— γ€— Using (π‘™π‘–π‘š)┬(β„Žβ†’0) π‘ π‘–π‘›β‘β„Ž/β„Ž = 1 & (π‘™π‘–π‘š)┬(β„Žβ†’0) γ€–(1 βˆ’ π‘π‘œπ‘ γ€—β‘γ€–β„Ž)γ€—/β„Ž = 0 = – x sin x (0) + x cos x (1) + ( sin x cos 0 + cos x sin 0) = 0 + x cos x + sin Γ— 1 + cos x Γ— 0 = 0 + x cos x + sin x + 0 = x cos x + sin x Hence f’ (x) = x cos x + sin x

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.