



Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii) Important
Example 2 (iii) Important
Example 2 (iv)
Example 2 (v)
Example 3 (i) Important
Example 3 (ii) Important
Example 4 (i)
Example 4 (ii) Important
Example 5
Example 6
Example 7 Important
Example 8
Example 9
Example 10 Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19 (i) Important
Example 19 (ii)
Example 20 (i) You are here
Example 20 (ii) Important
Example 21 (i)
Example 21 (ii) Important
Example 22 (i)
Example 22 (ii) Important
Last updated at March 22, 2023 by Teachoo
Example 20 Find the derivative of f(x) from the first principle, where f(x) is (i) sin x + cos x Given f (x) = sin x + cos x We need to find Derivative of f(x) We know that f’(x) = lim┬(h→0) 𝑓〖(𝑥 + ℎ) − 𝑓(𝑥)〗/ℎ Here, f (x) = sin x + cos x f (x + h) = sin (x + h) + cos (x + h) Putting values f’(x) = lim┬(h→0)〖(sin〖(𝑥 + ℎ)〗 + cos(𝑥 + ℎ) − (sin𝑥 + cos〖𝑥)〗)/ℎ〗 Using sin (A + B) = sin A cos B + cos A sin B & cos (A + B) = cos A cos B – sin A sin B = lim┬(h→0)〖sin〖𝑥 cos〖ℎ +〖 cos〗〖𝑥 sin〖ℎ + cos〖𝑥 cos〖ℎ − sin〖𝑥 〖 sin〗〖ℎ −〖 sin〗〖𝑥 −〖 cos〗𝑥 〗 〗 〗 〗 〗 〗 〗 〗 〗/h〗 = lim┬(h→0)〖cos〖𝑥 sin〖ℎ −〖 sin〗〖𝑥 sin〖ℎ + sin〖𝑥 cos〖ℎ − sin〖𝑥 +〖 cos〗〖𝑥 cos〖ℎ −〖 cos〗𝑥 〗 〗 〗 〗 〗 〗 〗 〗 〗/h〗 = lim┬(h→0)〖sin〖ℎ 〖(cos〗〖𝑥 − sin〖𝑥) + sin〖𝑥 (cos〖ℎ − 1) + cos𝑥 (cos〖ℎ − 1)〗 〗 〗 〗 〗 〗/h〗 = lim┬(h→0)(sin〖ℎ 〖(cos〗〖𝑥 − sin〖𝑥)〗 〗 〗/h+sin〖𝑥 (cos〖ℎ − 1)〗 〗/h+cos〖𝑥 (cos〖ℎ − 1)〗 〗/ℎ)" " = lim┬(h→0)〖sin〖ℎ 〖(cos〗〖𝑥 −〖 sin〗〖𝑥)〗 〗 〗/h+lim┬(h→0) sin〖𝑥 (cos〖ℎ − 1)〗 〗/h+lim┬(h→0) cos〖𝑥 (cos〖ℎ − 1)〗 〗/ℎ〗 = lim┬(h→0)〖"(cos x – sin x)" sinℎ/ℎ+lim┬(h→0) "(– sin x)" ((1 − cos〖ℎ)〗)/ℎ〗+lim┬(h→0) "(– cos x)" ((1 − cos〖ℎ)〗)/ℎ = "(cos x – sin x)" (𝐥𝐢𝐦)┬(𝐡→𝟎)〖𝐬𝐢𝐧𝒉/𝒉−sin〖𝑥 (𝐥𝐢𝐦)┬(𝐡→𝟎) 〗 ((𝟏 − 𝒄𝒐𝒔〖𝒉)〗)/𝒉−cos𝑥 (𝐥𝐢𝐦)┬(𝐡→𝟎) ((𝟏 − 𝒄𝒐𝒔〖𝒉)〗)/𝒉〗Using (𝑙𝑖𝑚)┬(ℎ→0) 𝑠𝑖𝑛ℎ/ℎ = 1 & (𝑙𝑖𝑚)┬(ℎ→0) 〖(1 − 𝑐𝑜𝑠〗〖ℎ)〗/ℎ = 0 Using (𝑙𝑖𝑚)┬(ℎ→0) 𝑠𝑖𝑛ℎ/ℎ = 1 & (𝑙𝑖𝑚)┬(ℎ→0) 〖(1 − 𝑐𝑜𝑠〗〖ℎ)〗/ℎ = 0