Example 19 - Chapter 13 Class 11 Limits and Derivatives - Part 4

Advertisement

Example 19 - Chapter 13 Class 11 Limits and Derivatives - Part 5

Advertisement

Example 19 - Chapter 13 Class 11 Limits and Derivatives - Part 6

  1. Chapter 13 Class 11 Limits and Derivatives (Term 1 and Term 2)
  2. Serial order wise

Transcript

Example 19 Find the derivative of f from the first principle, where f is given by (ii) f(x) = x + 1/x Given f (x) = x + 1/x We need to find Derivative of f(x) i.e. f’ (x) We know that f’(x) = lim┬(hβ†’0) 𝑓⁑〖(π‘₯ + β„Ž) βˆ’ 𝑓(π‘₯)γ€—/β„Ž Here, f(x) = x + 1/x f(x + h) = (x + h) + 1/(x + β„Ž) Putting values f’(x) = lim┬(hβ†’0)⁑〖(((π‘₯ + β„Ž)+ 1/(π‘₯ + β„Ž)) βˆ’ (π‘₯ + 1/π‘₯))/hγ€— = lim┬(hβ†’0)⁑〖(π‘₯ + β„Ž+ 1/(π‘₯ + β„Ž) βˆ’ π‘₯ βˆ’ 1/(π‘₯ ))/hγ€— = lim┬(hβ†’0)⁑〖(β„Ž+ 1/(π‘₯ + β„Ž) βˆ’ 1/π‘₯ + π‘₯ βˆ’ π‘₯)/β„Žγ€— = lim┬(hβ†’0)⁑〖(β„Ž+ 1/(π‘₯ + β„Ž) βˆ’ 1/π‘₯)/β„Žγ€— = lim┬(hβ†’0)⁑〖(β„Ž+ (π‘₯ βˆ’ (π‘₯ βˆ’ β„Ž))/((π‘₯ + β„Ž) (π‘₯)))/β„Žγ€— = lim┬(hβ†’0)⁑〖(β„Ž + ((βˆ’β„Ž))/((π‘₯ + β„Ž) π‘₯))/β„Žγ€— = lim┬(hβ†’0)⁑〖( β„Ž(1 βˆ’ 1/((π‘₯ + β„Ž) π‘₯)))/β„Žγ€— = lim┬(hβ†’0)⁑(1βˆ’1/((π‘₯ + β„Ž) π‘₯)) Putting h = 0 = [1βˆ’1/(π‘₯ (π‘₯ + 0) )] = πŸβˆ’πŸ/(π’™πŸ )

About the Author

Davneet Singh's photo - Teacher, Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.