




---last.jpg)
Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Nov. 30, 2019 by Teachoo
Transcript
Example 3 Evaluate: (i) (πππ)β¬(π₯β1) (π₯ 15 β 1)/(π₯10 β 1) (πππ)β¬(π₯β1) (π₯ 15 β 1)/(π₯10 β 1) = (γ(1)γ^15 β 1)/(γ(1)γ^10 β 1) = (1 β 1)/(1 β 1) = 0/0 Since it is form 0/0, We can solve by using theorem (πππ)β¬(π₯βπ) (π₯^π β π^π)/(π₯ β π) = na n β 1 Hence, (πππ)β¬(π₯β1) (π₯^15 β 1)/(π₯^10 β 1) = (πππ)β¬(π₯β1) π₯^15 β 1 Γ·limβ¬(xβ1) x10 β 1 = (πππ)β¬(π₯β1) π₯^15 β γ(1)γ^15 Γ· limβ¬(xβ1) x10 β (1)10 Multiplying and dividing by x β 1 = (πππ)β¬(π₯β1) (π₯^15 β 1^15)/(π₯ β 1) Γ· (πππ)β¬(π§β1) (π₯^10 β γ(10)γ^10)/(π₯ β 1) Using (πππ)β¬(π₯βπ) ( π₯^π β π^π)/(π₯ β π) = nan β 1 Using (πππ)β¬(π₯βπ) ( π₯^π β π^π)/(π₯ β π) = nan β 1 (πππ)β¬(π₯β1) (π₯^15 β γ(1)γ^15)/(π₯ β 1) = 15(1)15 β 1 = 15 (1)14 = 15 (πππ)β¬(π₯β1) (π₯^10 β γ(1)γ^10)/(π₯ β 1) = 10(1)10 β 1 = 10 (1)9 = 10 Hence , (πππ)β¬(π₯β1) (π₯^15 β 1^15)/(π₯ β 1) Γ· (πππ)β¬(π₯β1) (π₯^10 β110)/(π₯ β 1) = 15 Γ· 10 = 15/10 = 3/2 β΄ (πππ)β¬(πβπ) (π^ππ β π)/(π^ππ β π) = π/π Example 3 Evaluate: (ii) (πππ)β¬(π₯β0) (β(1 + π₯) β 1)/π₯ (πππ)β¬(π₯β0) (β(1 + x )β 1)/x Putting x = 0 = (β(1 + 0) β 1)/0 = (β(1 ) β 1)/0 = (1 β 1)/0 = 0/0 Since it is a 0/0 form We simplify the equation Putting y = 1 + x β y β 1 = x As x β 0 y β 1 + 0 y β 1 So, our equation becomes (πππ)β¬(π₯β0) (β(1 + π₯ )β 1)/π₯ = (πππ)β¬(π¦β1) (βπ¦ β 1)/(π¦ β 1) = (πππ)β¬(π₯β1) ( π¦^((β1)/2) β 1)/(π¦ β 1) = (πππ)β¬(π₯β1) ( π¦^((β1)/2) β 1^((β1)/2))/(π¦ β 1) = 1/2 Γ 1^((β1)/2 β 1) = 1/2 Γ 1 = π/π
Examples
Example 2 Important
Example 3 Important You are here
Example 4
Example 5
Example 6
Example 7 Important
Example 8
Example 9
Example 10
Example 11
Example 12
Example 13
Example 14
Example 15
Example 16
Example 17 Important
Example 18
Example 19 Important
Example 20 (i) Important
Example 20 (ii)
Example 21 Important
Example 22 Important
About the Author