Solve all your doubts with Teachoo Black (new monthly pack available now!)

Are you in **school**? Do you **love Teachoo?**

We would love to talk to you! Please fill this form so that we can contact you

Examples

Example 1 (i)

Example 1 (ii)

Example 1 (iii)

Example 2 (i)

Example 2 (ii) Important

Example 2 (iii) Important

Example 2 (iv)

Example 2 (v)

Example 3 (i) Important

Example 3 (ii) Important

Example 4 (i)

Example 4 (ii) Important

Example 5

Example 6

Example 7 Important You are here

Example 8

Example 9

Example 10 Important

Example 11

Example 12

Example 13 Important

Example 14

Example 15 Important

Example 16

Example 17 Important

Example 18

Example 19 (i) Important

Example 19 (ii)

Example 20 (i)

Example 20 (ii) Important

Example 21 (i)

Example 21 (ii) Important

Example 22 (i)

Example 22 (ii) Important

Last updated at Nov. 30, 2019 by Teachoo

Example 7 Find the derivative of sin x at x = 0. Let f(x) = sin x We know that fβ(x) = (πππ)β¬(ββ0) πβ‘γ(π₯ + β) β π(π₯)γ/β Here, f(x) = sin x f(x + h) = sin (x + h) Now, fβ(x) = limβ¬(hβ0) π ππβ‘γ(π₯ + β) β π ππ π₯γ/β Putting x = 0 fβ (0) = limβ¬(hβ0) π ππβ‘γ(0 + β) β π ππ (0)γ/β = limβ¬(hβ0) sinβ‘γβ β 0γ/h = limβ¬(hβ0) sinβ‘γβ γ/h = 1 Hence, derivative of sin x at x = 0 is 1 Using limβ¬(xβ0) sinβ‘π₯/π₯ = 1 Replacing x by h limβ¬(xβ0) sinβ‘β/β = 1