
Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Nov. 30, 2019 by Teachoo
Transcript
Example 7 Find the derivative of sin x at x = 0. Let f(x) = sin x We know that fβ(x) = (πππ)β¬(ββ0) πβ‘γ(π₯ + β) β π(π₯)γ/β Here, f(x) = sin x f(x + h) = sin (x + h) Now, fβ(x) = limβ¬(hβ0) π ππβ‘γ(π₯ + β) β π ππ π₯γ/β Putting x = 0 fβ (0) = limβ¬(hβ0) π ππβ‘γ(0 + β) β π ππ (0)γ/β = limβ¬(hβ0) sinβ‘γβ β 0γ/h = limβ¬(hβ0) sinβ‘γβ γ/h = 1 Hence, derivative of sin x at x = 0 is 1 Using limβ¬(xβ0) sinβ‘π₯/π₯ = 1 Replacing x by h limβ¬(xβ0) sinβ‘β/β = 1
Examples
Example 2 Important
Example 3 Important
Example 4
Example 5
Example 6
Example 7 Important You are here
Example 8
Example 9
Example 10
Example 11
Example 12
Example 13
Example 14
Example 15
Example 16
Example 17 Important
Example 18
Example 19 Important
Example 20 (i) Important
Example 20 (ii)
Example 21 Important
Example 22 Important
About the Author