Example 6 - Find derivative of f(x) = 2x2 + 3x - 5  at x =  -1 - Examples

Slide27.JPG
Slide28.JPG Slide29.JPG Slide30.JPG

Slide31.JPG Slide32.JPG

  1. Chapter 13 Class 11 Limits and Derivatives
  2. Serial order wise
Ask Download

Transcript

Example ,6 (Method 1) Find the derivative of the function f(x) = 2x2 + 3x – 5 at x = –1. Also prove that f’(0) + 3f’( –1) = 0. Given f(x) = 2x2 + 3x – 5 We know that f’(x) = lim﷮h→0﷯ f﷮ 𝑥 + ℎ﷯ − f (x)﷯﷮h﷯ Now f (x) = 2x2 + 3x – 5 So, f (x + h) = 2(x + h)2 + 3(x + h) – 5 Putting values f’ (x) = lim﷮h→0﷯ (2(𝑥 + ℎ)﷮2﷯ + 3 𝑥 + ℎ﷯ − 5) − (2𝑥﷮2﷯ + 3𝑥 − 5)﷮h﷯ f’ (x) = lim﷮h→0﷯ (2(𝑥 + ℎ)﷮2﷯ + 3 𝑥 + ℎ﷯ − 5) − (2𝑥﷮2﷯ + 3𝑥 − 5)﷮h﷯ Putting x = – 1 f’( –1) = lim﷮h→0﷯ (2(−1+ℎ)﷮2﷯ + 3 −1+ℎ﷯ − 5) − (2 ((−1)﷮2﷯) + 3(−1) − 5)﷮h﷯ = lim﷮h→0﷯ (2(−1+ℎ)﷮2﷯ + 3 −1+ℎ﷯ − 5) − (2 1﷯ − 3 − 5)﷮h﷯ = lim﷮h→0﷯ (2(−1+ℎ)﷮2﷯ + 3 −1+ℎ﷯ − 5) − (−6)﷮h﷯ = lim﷮h→0﷯ 2(−1+ℎ)﷮2﷯ + 3 −1+ℎ﷯ − 5 + 6﷮h﷯ = lim﷮h→0﷯ 2 −1﷯2 + ℎ2 +2 −1﷯ℎ﷯ − 3 + 3ℎ + 1﷮h﷯ = lim﷮h→0﷯ 2 1 + ℎ2 − 2ℎ﷯ + 3ℎ − 2﷮h﷯ = lim﷮h→0﷯ 2 + 2ℎ2 − 4ℎ + 3ℎ − 2﷮h﷯ = lim﷮h→0﷯ 2ℎ2− ℎ﷮h﷯ = lim﷮h→0﷯ ℎ(2ℎ − 1)﷮h﷯ = lim﷮h→0﷯ 2h – 1 Putting h = 0 = 2(0) – 1 = – 1 Hence f’( –1) = – 1 Now, finding f’(0) For f’(0) f’(x)= lim﷮h→0﷯ 𝑓 𝑥 + ℎ﷯ − 𝑓(𝑥)﷮ℎ﷯ f’(x)= lim﷮h→0﷯ 2 𝑥 + ℎ﷯2 + 3 𝑥 + ℎ﷯ − 5﷯ −[2𝑥2 + 3𝑥 − 5]﷮ℎ﷯ putting x = 0 f’(0)= lim﷮h→0﷯ 2 0 + ℎ﷯2 + 3 0 + ℎ﷯ − 5﷯ −[2(0)2 + 3(0) − 5]﷮ℎ﷯ f’(0)= lim﷮h→0﷯ 2ℎ2 + 3ℎ − 5﷯ − [0 + 0 − 5]﷮ℎ﷯ f’(0)= lim﷮h→0﷯ 2ℎ2 + 3ℎ − 5 + 5﷮ℎ﷯ f’(0)= lim﷮h→0﷯ 2ℎ2 + 3ℎ﷮ℎ﷯ = lim﷮h→0﷯ ℎ(2ℎ+3)﷮h﷯ = lim﷮h→0﷯ 2h + 3 Putting h = 0 = 2(0) + 3 = 3 Hence, f’(0) = 3 Now, f’ (0) + 3f’( – 1) Putting value of f’(0) & f’( –1) = 3 + 3 ( –1) = 0 Hence Proved Example 6 (Method 2) Find the derivative of the function f(x) = 2x2 + 3x – 5 at x = –1. Also prove that f’(0) + 3f’( –1) = 0. Given f(x) = 2x2 + 3x – 5 Now, f’(x) = (2x2 + 3x – 5)’ = 2(2.x2–1) + 3(1.x1–1) – 0 = 2(2x1) + 3(1) = 4x + 3 Putting x = 0 f’(0) = 4(0) + 3 = 0 + 3 = 3 Taking f’ (0) + 3f’( – 1) Putting value of f’(0) & f’( –1) = 3 + 3 ( –1) = 3 – 3 = 0 Hence Proved

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.