Check sibling questions

Example 9 - x2/25 + y2/9 = 1 Find foci, vertices, eccentricity - Ellipse - Defination

Example 9 - Chapter 11 Class 11 Conic Sections - Part 2
Example 9 - Chapter 11 Class 11 Conic Sections - Part 3

This video is only available for Teachoo black users

Get Real time Doubt solving from 8pm to 12 am!


Transcript

Example 9 Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse ﷐x2﷮25﷯ + ﷐y2﷮9﷯ = 1 Given ﷐﷐𝑥﷮2﷯﷮25﷯ + ﷐﷐𝑦﷮2﷯﷮9﷯ = 1 Since 25 > 9 Hence the above equation is of the form ﷐﷐𝑥﷮2﷯﷮﷐𝑎﷮2﷯﷯ + ﷐﷐𝑦﷮2﷯﷮﷐𝑏﷮2﷯﷯ = 1 Comparing (1) and (2) We know that c = ﷐﷮﷐𝑎﷮2﷯−﷐𝑏﷮2﷯﷯ c = ﷐﷮25 −9﷯ c = ﷐﷮16﷯ c = 4 Coordinates of foci = ( ± c, 0) = (± 4, 0) So, coordinates of foci are (4, 0) & (−4, 0) Vertices = (± a, 0) = (± 5, 0) Thus vertices are (5, 0) and (–5, 0) Length of major axis = 2a = 2 × 5 = 10 Length of minor axis = 2b = 2 × 3 = 6 Eccentricity is e = ﷐𝑐﷮𝑎﷯ = ﷐4﷮5﷯ Latus Rectum = ﷐2﷐𝑏﷮2﷯﷮𝑎﷯ = ﷐2 × 9﷮5﷯ = ﷐18﷮5﷯

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.