Question 8 - Finding sum from nth number - Chapter 8 Class 11 Sequences and Series
Last updated at April 16, 2024 by Teachoo
Finding sum from nth number
Question 8 Deleted for CBSE Board 2025 Exams You are here
Question 10 Deleted for CBSE Board 2025 Exams
Question 9 Important Deleted for CBSE Board 2025 Exams
Question 1 Deleted for CBSE Board 2025 Exams
Question 5 Deleted for CBSE Board 2025 Exams
Question 7 Important Deleted for CBSE Board 2025 Exams
Misc 12 Important
Question 3 Deleted for CBSE Board 2025 Exams
Question 2 Important Deleted for CBSE Board 2025 Exams
Question 6 Important Deleted for CBSE Board 2025 Exams
Question 13 Important Deleted for CBSE Board 2025 Exams
Question 14 Deleted for CBSE Board 2025 Exams
Ex 9.4.4 Important Deleted for CBSE Board 2025 Exams
Misc 18 Important
Finding sum from nth number
Last updated at April 16, 2024 by Teachoo
Question 8 Find the sum to n terms of the series whose nth term is given by n (n + 1) (n + 4). Given an = n(n + 1) (n + 4) = (n2 + n)(n + 4) = n2 (n + 4) + n(n + 4) = n3 + 4n2 + n2 + 4n = n3 + n2 + 4n2 + 4n = n3 + 5n2 + 4n The sum of n terms is = (n(n + 1)/( 2))^2+ 5 ((n(n + 1)(2n + 1))/( 6)) + 4((n(n + 1))/( 2)) = n2(n + 1)2/4 + (5(n(n + 1)(2n + 1)))/( 6) + 2(n(n + 1)) = n(n + 1)(n(n + 1)/4 " + " ((5(2n + 1)) )/( 6) "+ 2" ) = n(n + 1) (((3n(n + 1)) + (10(2n + 1)) +24)/( 12)) = n(n + 1) ((3n2 + 3n + 20n + 10 + 24 )/( 12)) = (𝑛(𝑛 + 1))/12 (3n2 + 23n + 34) Thus, the required sum is (𝑛(𝑛 + 1))/12 (3n2 + 23n + 34)