Ex 9.2, 15 - If an + bn / an-1 + bn-1 is AM between a, b - Ex 9.2

Ex 9.2, 15 - Chapter 9 Class 11 Sequences and Series - Part 2
Ex 9.2, 15 - Chapter 9 Class 11 Sequences and Series - Part 3


Transcript

Ex 9.2 , 15 If (𝑎^𝑛 + 𝑏^𝑛)/(𝑎^(𝑛−1) + 𝑏^(𝑛−1) ) is the A.M. between a and b, then find the value of n. We know that arithmetic mean between a & b is A.M. = (a + b)/2 It is given that AM between a & b is (𝑎^𝑛 + 𝑏^𝑛)/(𝑎^(𝑛−1) + 𝑏^(𝑛−1) ) So, (𝑎^𝑛 + 𝑏^𝑛)/(𝑎^(𝑛−1) + 𝑏^(𝑛−1) ) = (a + b)/2 2(an + bn) = (a + b) (an – 1 + bn – 1) 2an + 2bn = a(an – 1 + bn – 1) + b(an – 1 + bn – 1) 2an + 2bn = aan – 1 + abn – 1 + ban – 1 + bbn – 1 2an + 2bn = a1 . an – 1 + abn – 1 + ban – 1 + b1 . bn – 1 2an + 2bn = a1 + n – 1 + abn – 1 + ban – 1 + b1 + n – 1 2an + 2bn = a1 + n – 1 + abn – 1 + ban – 1 + b1 + n – 1 2an + 2bn = an + abn – 1 + ban – 1 + bn 2an + 2bn – an – abn – 1 – an – 1 b – bn = 0 2an – an + 2bn – bn - abn – 1 – an - 1 b = 0 an + bn – abn – 1 – an – 1 b = 0 an – an – 1 b + bn – a bn – 1 = 0 a.an – 1 – an – 1 b + b.bn – 1 – a bn – 1 = 0 an – 1 (a – b) – bn – 1 (a – b) = 0 (an – 1 – bn – 1)(a – b) = 0 ∴ an – 1 – bn – 1 = 0 Solving an – 1 = bn – 1 an – 1 = bn – 1 𝑎^(𝑛 −1)/(𝑏^(𝑛 −1) ) = 1 (𝑎/𝑏)^(𝑛 −1) = 1 (𝑎/𝑏)^(𝑛 −1) = (𝑎/𝑏)^0 Comparing powers n – 1 = 0 n = 1 Hence n = 1

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.