Question 5 - Finding sum from nth number - Chapter 8 Class 11 Sequences and Series
Last updated at April 16, 2024 by Teachoo
Finding sum from nth number
Question 8 Deleted for CBSE Board 2025 Exams
Question 10 Deleted for CBSE Board 2025 Exams
Question 9 Important Deleted for CBSE Board 2025 Exams
Question 1 Deleted for CBSE Board 2025 Exams
Question 5 Deleted for CBSE Board 2025 Exams You are here
Question 7 Important Deleted for CBSE Board 2025 Exams
Misc 12 Important
Question 3 Deleted for CBSE Board 2025 Exams
Question 2 Important Deleted for CBSE Board 2025 Exams
Question 6 Important Deleted for CBSE Board 2025 Exams
Question 13 Important Deleted for CBSE Board 2025 Exams
Question 14 Deleted for CBSE Board 2025 Exams
Ex 9.4.4 Important Deleted for CBSE Board 2025 Exams
Misc 18 Important
Finding sum from nth number
Last updated at April 16, 2024 by Teachoo
Question 5 Find the sum to n terms of the series 52 + 62 + 72 + .. + 202 52 + 62 + 72 + .. + 202 = (12 + 22 + 32 + 42 + 52 + 62 + + 202) (12 + 22 + 32 + 42) We know that Sum of square of n natural number is i.e. (12 + 22 + + n2) = (n(n+1)(2n+1))/6 For 12 + 22 + + 202 n = 20 Putting n = 20 in (2) 12 + 22 + + 202 = (20(20 + 1)(2(20) + 1))/6 = (20(21)(40 + 1))/6 = (20 (21) (41))/6 = (20 21 41)/6 = 10 7 41 = 2870 Thus, 12 + 22 + + 202 = 2870 For 12 + 22 + 32 + 42 n = 4 Putting n = 4 in (12 + 22 + + n2) = ( ( +1)(2 +1))/6 12 + 22 + 32 + 42 = (4(4 + 1)(2(4) + 1))/6 = (4 5 9)/6 = 2 5 3 = 30 Now, from (1) 52 + 62 + 72 + .. + 202 = (12 + 22 + 32 + 42 + 52 + 62 + + 202) (12 + 22 + 32 + 42) Putting values = 2870 30 = 2840 Thus, the required sum is 2840