


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Cos x + cos y formula
Ex 3.3, 11 Important
Misc 3
Misc 4 Important
Ex 3.3, 14
Ex 3.3, 15
Misc 5
Misc 7 Important
Example 16 Important
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Example 17 Important You are here
Misc 6 Important
cos x + cos y formula
Last updated at May 29, 2023 by Teachoo
Example 17 Prove that sin〖5x − 〖2sin 3x +〗sinx 〗/𝑐𝑜𝑠〖5x − 𝑐𝑜𝑠x 〗 = tan x Taking L.H.S. sin〖5x + 〖sin x − 〗2sin3x 〗/𝑐𝑜𝑠〖5x − 𝑐𝑜𝑠x 〗 = 〖(sin〗〖5x + 〖sin x) − 〗〖2 sin〗3x 〗/𝑐𝑜𝑠〖5x − 𝑐𝑜𝑠x 〗 Solving numerator and denominator separately sin 5x + sin x = 2 sin ((5𝑥 + 𝑥)/2) cos ((5𝑥 − 𝑥)/2) = 2 sin (6𝑥/2) cos (4𝑥/2) = 2 sin 3x cos 2x sin 5x + sin x = 2 sin ((5𝑥 + 𝑥)/2) cos ((5𝑥 − 𝑥)/2) = 2 sin (6𝑥/2) cos (4𝑥/2) = 2 sin 3x cos 2x sin x + sin y = 2 sin (𝑥 + 𝑦)/2 cos (𝑥 − 𝑦)/2 Putting x = 5x & y = x sin x + sin y = 2 sin (𝑥 + 𝑦)/2 cos (𝑥 − 𝑦)/2 Putting x = 5x & y = x cos x – cos y = –2 sin (𝑥 + 𝑦)/2 sin (𝑥 − 𝑦)/2 Putting x = 5x & y = x Solving R.H.S 𝐬𝐢𝐧〖𝟓𝐱 + 〖𝐬𝐢𝐧 𝐱 − 〗2sin3x 〗/𝒄𝒐𝒔〖𝟓𝐱 − 𝒄𝒐𝒔𝐱 〗 Putting values = (2 sin3𝑥 cos2𝑥 − 2 sin3𝑥)/(−2 sin〖3𝑥 sin2𝑥 〗 ) = (2 sin3𝑥 (cos〖2𝑥 − 1)〗)/(−2 sin〖3𝑥 sin2𝑥 〗 ) = ( (cos〖2𝑥 − 1)〗)/(−sin2𝑥 ) = ( −(cos〖2𝑥 −1) 〗)/sin2𝑥 = (〖1 − 𝐜𝐨𝐬〗𝟐𝒙 )/𝒔𝒊𝒏𝟐𝒙 "Using cos 2x = 1 – 2sin2 x" "& sin 2x = 2 cos x sin x" = (1 − (𝟏 − 𝟐 𝐬𝐢𝐧𝟐𝒙 ) )/(𝟐 𝒄𝒐𝒔𝒙 𝒔𝒊𝒏𝒙 ) = (1 − 1 + 2 sin2𝑥)/(2 cos〖𝑥 〗 sin𝑥 ) = (0 + 2 sin2𝑥)/(2 cos〖𝑥 〗 sin𝑥 ) = (2 sin2𝑥)/(2 cos〖𝑥 〗 sin𝑥 ) = sin〖𝑥 〗/cos〖𝑥 〗 = tan x = R.H.S. Hence L.H.S. = R.H.S. Hence proved