Ex 3.3, 11 - Prove that cos (3pi/4 + x) - cos (3pi/4 - x) - Ex 3.3

part 2 - Ex 3.3, 11 - Ex 3.3 - Serial order wise - Chapter 3 Class 11 Trigonometric Functions
part 3 - Ex 3.3, 11 - Ex 3.3 - Serial order wise - Chapter 3 Class 11 Trigonometric Functions

Share on WhatsApp

Transcript

Ex 3.3, 11 Prove that cos (3π/4+x) – cos (3π/4−x) = –√2 sin x Solving L.H.S. cos (3π/4+x) – cos (3π/4−x) = –2 sin (((𝟑𝛑/𝟒 + 𝐱) + (𝟑𝛑/𝟒 − 𝐱))/𝟐) sin (((𝟑𝛑/𝟒 + 𝐱) − (𝟑𝛑/𝟒 − 𝐱))/𝟐) = –2 sin (((3π/4 + 3π/4) + (𝑥 − 𝑥))/2) sin ((3π/4 + x − 3π/4 + x)/2) = –2 sin (((3π/2 ))/2) sin (2x/2) = –2 sin (𝟑𝛑/𝟒) sin 𝒙 Putting π = 180° = –2 sin ((3 × 180°)/4) sin 𝑥 = –2 sin ("135°" ) sin 𝒙 = –2 sin (180"°" – 45"°") sin x = –2 sin 45° sin x = –2 × 1/√2 × sin x = −√2 × √2 × 1/√2 × sin x = −√𝟐 sin x = R.H.S. Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo