Check sibling questions

Ex 1.1, 5 - Use Euclid’s division lemma to show that cube - Ex 1.1

Ex 1.1, 5 - Chapter 1 Class 10 Real Numbers - Part 2
Ex 1.1, 5 - Chapter 1 Class 10 Real Numbers - Part 3

Answer Calculated in the video has some mistake please check the image for the correct answer.

This video is only available for Teachoo black users

Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month


Transcript

Ex 1.1 , 5 Use Euclid’s division lemma to show that the cube of any positive integer is of the form 9m, 9m+ 1 or 9m+ 8. As per Euclid’s Division Lemma If a and b are 2 positive integers, then a = bq + r where 0 ≤ r < b Let positive integer be a And b = 3 Hence a = 3q + r where ( 0 ≤ r < 3) r is an integer greater than or equal to 0 and less than 3 hence r can be either 0 , 1 or 2 If r = 0 Our equation becomes a = 3q + r a = 3q + 0 a = 3q Cubing both sides a3 = (3q)3 a3 = 27q3 a3 = 9(3q3) a3 = 9m Where m = 3q3 If r = 1 Our equation becomes a = 3q + r a = 3q + 1 Cubing both sides a3 = (3q + 1)3 a3 = (3q)3 + 13 + 3 × 3q × 1(3q + 1) a3 = 27q3 + 1 + 9q × (3q + 1) a3 = 27q3 + 1 + 27q2 + 9q a3 = 27q3 + 27q2 + 9q + 1 a3 = 9(3q3 + 3q2 + q) + 1 a3 = 9m + 1 Where m = 3q3 + 3q2 + q If r = 2 Our equation becomes a = 3q + r a = 3q + 2 Cubing both sides a3 = (3q + 2)3 a3 = (3q)3 + 23 + 3 × 3q × 2(3q + 2) a3 = 27q3 + 8 + 18q × (3q + 2) a3 = 27q3 + 8 + 18q2 + 6q a3 = 27q3 + 54q2 + 36q + 8 a3 = 9(3q3 + 6q2 + 4q) + 8 a3 = 9m + 8 Where m = 3q3 + 6q2 + 4q Hence, cube of any positive number can be expressed of the form 9m or 9m + 1 or 9m + 8 Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.