The rest of the post is locked. Join Teachoo Black to see the full post.
Chapter 1 Class 10 Real Numbers
Example 1 Important
Example 5 Important
Question 2 Important Deleted for CBSE Board 2025 Exams You are here
Question 4 Important Deleted for CBSE Board 2025 Exams
Question 5 Deleted for CBSE Board 2025 Exams
Ex 1.1, 3 (i)
Ex 1.1, 4 Important
Ex 1.1, 7 Important
Ex 1.2, 3 (i) Important
Question 2 Important Deleted for CBSE Board 2025 Exams You are here
Chapter 1 Class 10 Real Numbers
Last updated at April 16, 2024 by Teachoo
Ex 1.1 , 2 Show that any positive odd integer is of the form 6q + 1, or 6q+ 3, or 6q+ 5, where q is some integer. As per Euclid’s Division Lemma If a and b are 2 positive integers, then a = bq + r where 0 ≤ r < b Let positive integer be a And b = 6 Hence a = 6q + r where ( 0 ≤ r < 6) r is an integer greater than or equal to 0 and less than 6 hence r can be either 0 , 1 , 2 ,3 , 4 or 5 Therefore, any odd integer is of the form 6q + 1, 6q + 3 or 6q + 5 Hence proved