Last updated at Dec. 16, 2024 by Teachoo
Ex 12.1, 2 (Method 1) Factorise the following expressions. (ix) ๐ฅ^2 y z + x ๐ฆ^2z + x y ๐ง^2๐ฅ^2 y z + x ๐ฆ^2z + x y ๐ง^2 = (๐ฅ ร ๐yz) + (y ร ๐yz) + (z ร ๐yz) Taking ๐yz common, = ๐yz (๐ + y + z) Ex 12.1, 2 (Method 2) Factorise the following expressions. (ix) ๐ฅ^2 y z + x ๐ฆ^2z + x y ๐ง^2 ๐ฅ^2 y z ใ๐ฅ๐ฆใ^2z ๐ฅy๐ง^2 So, x, y and z are the common factors. ๐ฅ^2 y z + ๐ฅ๐ฆ^2z + ๐ฅy๐ง^2 = (๐ฅ ร ๐ฅ ร y ร z) + (๐ฅ ร y ร y ร z) + (๐ฅ ร y ร z ร z) Taking ๐ ร y ร z common, = ๐ฅ ร y ร z ร (๐ฅ + y + z) = ๐yz (๐ + y + z) = ๐ฅ^2 ร y ร z = ๐ฅ ร ๐ฆ^2 ร z = ๐ฅ ร y ร ๐ง^2 = ๐ ร ๐ ร y ร z = ๐ ร y ร y ร z = ๐ ร y ร z ร z
Ex 12.1
Ex 12.1, 1 (ii)
Ex 12.1, 1 (iii) Important
Ex 12.1, 1 (iv) Important
Ex 12.1, 1 (v)
Ex 12.1, 1 (vi) Important
Ex 12.1, 1 (vii)
Ex 12.1, 1 (viii) Important
Ex 12.1, 2 (i)
Ex 12.1, 2 (ii) Important
Ex 12.1, 2 (iii)
Ex 12.1, 2 (iv) Important
Ex 12.1, 2 (v)
Ex 12.1, 2 (vi)
Ex 12.1, 2 (vii)
Ex 12.1, 2 (viii) Important
Ex 12.1, 2 (ix) You are here
Ex 12.1, 2 (x) Important
Ex 12.1, 3 (i)
Ex 12.1, 3 (ii) Important
Ex 12.1, 3 (iii)
Ex 12.1, 3 (iv) Important
Ex 12.1, 3 (v) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo