Check sibling questions

 


Transcript

Ex 12.1, 2 (Method 1) Factorise the following expressions. (ix) ๐‘ฅ^2 y z + x ๐‘ฆ^2z + x y ๐‘ง^2๐‘ฅ^2 y z + x ๐‘ฆ^2z + x y ๐‘ง^2 = (๐‘ฅ ร— ๐’™yz) + (y ร— ๐’™yz) + (z ร— ๐’™yz) Taking ๐’™yz common, = ๐’™yz (๐’™ + y + z) Ex 12.1, 2 (Method 2) Factorise the following expressions. (ix) ๐‘ฅ^2 y z + x ๐‘ฆ^2z + x y ๐‘ง^2 ๐‘ฅ^2 y z ใ€–๐‘ฅ๐‘ฆใ€—^2z ๐‘ฅy๐‘ง^2 So, x, y and z are the common factors. ๐‘ฅ^2 y z + ๐‘ฅ๐‘ฆ^2z + ๐‘ฅy๐‘ง^2 = (๐‘ฅ ร— ๐‘ฅ ร— y ร— z) + (๐‘ฅ ร— y ร— y ร— z) + (๐‘ฅ ร— y ร— z ร— z) Taking ๐’™ ร— y ร— z common, = ๐‘ฅ ร— y ร— z ร— (๐‘ฅ + y + z) = ๐’™yz (๐’™ + y + z) = ๐‘ฅ^2 ร— y ร— z = ๐‘ฅ ร— ๐‘ฆ^2 ร— z = ๐‘ฅ ร— y ร— ๐‘ง^2 = ๐’™ ร— ๐’™ ร— y ร— z = ๐’™ ร— y ร— y ร— z = ๐’™ ร— y ร— z ร— z

  1. Chapter 12 Class 8 Factorisation
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo