Last updated at Dec. 16, 2024 by Teachoo
Ex 12.1, 2 (Method 1) Factorise the following expressions. (viii) โ 4๐^2 + 4 ab โ 4 caโ 4๐^2 + 4 ab โ 4 ca Taking 4 common, = 4 (โ๐^2 + ab โ ca) = 4 ((โa ร a) + (a ร b) โ (c ร a)) Taking a common, = 4a (โa + b โ c) Ex 12.1, 2 (Method 2) Factorise the following expressions. (viii) โ 4๐^2 + 4 ab โ 4 caNow, โ 4๐^๐ = โ4 ร ๐^2 = โ1 ร 4 ร ๐^2 = โ1 ร 2 ร 2 ร ๐^2 = โ1 ร 2 ร 2 ร a ร a 4ab = 4 ร a ร b = 2 ร 2 ร a ร b 4ca = 4 ร c ร a = 2 ร 2 ร c ร a So, 2, 2 and a are the common factors. โ 4๐^2 + 4ab โ4ca = (โ1 ร 2 ร 2 ร a ร a) + (2 ร 2 ร a ร b) โ (2 ร 2 ร c ร a) Taking 2 ร 2 ร a common, = 2 ร 2 ร a ร ((โ1 ร a) + b โ c) = 4a (โa + b โ c)
Ex 12.1
Ex 12.1, 1 (ii)
Ex 12.1, 1 (iii) Important
Ex 12.1, 1 (iv) Important
Ex 12.1, 1 (v)
Ex 12.1, 1 (vi) Important
Ex 12.1, 1 (vii)
Ex 12.1, 1 (viii) Important
Ex 12.1, 2 (i)
Ex 12.1, 2 (ii) Important
Ex 12.1, 2 (iii)
Ex 12.1, 2 (iv) Important
Ex 12.1, 2 (v)
Ex 12.1, 2 (vi)
Ex 12.1, 2 (vii)
Ex 12.1, 2 (viii) Important You are here
Ex 12.1, 2 (ix)
Ex 12.1, 2 (x) Important
Ex 12.1, 3 (i)
Ex 12.1, 3 (ii) Important
Ex 12.1, 3 (iii)
Ex 12.1, 3 (iv) Important
Ex 12.1, 3 (v) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo