Example 10 (ii) - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Example 10 Find the following integrals: (ii) 𝑥 + 3 5 − 4𝑥 − 𝑥2 𝑑𝑥 It can be written in the form 𝑥+3= A 𝑑𝑑𝑥 − 𝑥2−4𝑥+5+ B 𝑥+3= A −2𝑥−4+ B 𝑥+3= 2A 𝑥−4A+B Finding A & B Now, we know that 𝑥+3=A −2𝑥−4+B 𝑥+3= −1 2 −2𝑥−4+1 Step 2 : Integrating 𝑥+3 5 − 4𝑥 + 𝑥2.𝑑𝑥= 12 −2𝑥 − 4+1 5 − 4𝑥 − 𝑥2.𝑑𝑥 = −1 2 −2𝑥 − 4+1 5 − 4𝑥 + 𝑥2𝑑𝑥+ 1 5 − 4𝑥 − 𝑥2𝑑𝑥 = −1 2 −2𝑥 − 4 5 − 4𝑥 + 𝑥2.𝑑𝑥+ 1 5 − 4𝑥 − 𝑥2.𝑑𝑥 Taking I1 I1 = −1 2 −2𝑥 − 4 − 𝑥2 − 4𝑥 + 5.𝑑𝑥 Let t = − 𝑥2 − 4𝑥 + 5 Differentiating both sides w.r.t. 𝑥 −2𝑥 − 4 = 𝑑𝑡𝑑𝑥 𝑑𝑥= 𝑑𝑡− 2𝑥 − 4 Now, I1 = −1 2 −2𝑥 − 4 − 𝑥2 − 4𝑥 + 5.𝑑𝑥 Putting the values of 𝑥2−4𝑥+5 and 𝑑𝑥 I1 = −1 2 −2𝑥 − 4 𝑡. 𝑑𝑡 −2𝑥 −4 I1 = −1 2 1 𝑡.𝑑𝑡 I1 = −1 2 1 𝑡 12.𝑑𝑡 I1 = −1 2 𝑡 −12 𝑑𝑡 I1 = −1 2 𝑡 −1 2 + 1 −1 2 + 1+𝐶1 I1 = −1 2 𝑡 1 2 12+𝐶1 I1 = − 𝑡 1 2 +𝐶1 I1 = − 𝑡+𝐶1 I1 = − − 𝑥2−4𝑥+5+𝐶1 I1 = − 5−4𝑥− 𝑥2+𝐶1 Taking 𝐈𝟐 I2 = 1 5 − 4𝑥 − 𝑥2.𝑑𝑥 I2 = 1 − 𝑥2 + 4𝑥 − 5𝑑𝑥 I2 = 1 − 𝑥2 + 2 2 𝑥 − 5𝑑𝑥 I2 = 1 − 𝑥2 + 2 2 𝑥 + 22 − 22 − 5𝑑𝑥 I2 = 1 − 𝑥+22 − 4 − 5𝑑𝑥 I2 = 1 − 𝑥+22 − 9𝑑𝑥 I2 = 1 9 − 𝑥 + 22𝑑𝑥 I2 = 1 32− 𝑥+22𝑑𝑥 I2 = sin−1 𝑥 + 23+𝐶2 Now, putting the values of I1 and I2 in eq. (1) we get 𝑥 + 3 5 − 4𝑥 − 𝑥2.𝑑𝑥= −1 2 − 2𝑥 − 4 5 − 4𝑥 − 𝑥2+ 1 5 − 4𝑥 − 𝑥2𝑑𝑥 =− 5 − 4𝑥 − 𝑥2+𝐶1+ sin−1 𝑥 + 23+𝐶2 =− 𝟓 − 𝟒𝒙 − 𝒙𝟐+ 𝒔𝒊𝒏−𝟏 𝒙 + 𝟐𝟑+𝑪
Integration by specific formulaes - Method 10
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo