Check sibling questions




Transcript

Example 10 Find the following integrals: (i) ﷮﷮ 𝑥 + 2﷮2 𝑥﷮2﷯ + 6𝑥 + 5 ﷯﷯ 𝑑𝑥 It can be written as 𝑥+2= A 𝑑﷮𝑑𝑥﷯ 2 𝑥﷮2﷯+6𝑥+5﷯+ B 𝑥+2= A 4𝑥+6﷯+ B 𝑥+2= 4A﷯ 𝑥﷯+6A+B Finding A & B Now, we know that 𝑥+2= A 4𝑥+6﷯+ B 𝑥+2= 1﷮4﷯ 4𝑥+6﷯+ 1﷮2﷯ Now, our equation is ﷮﷮ 𝑥 + 2﷮2 𝑥﷮2﷯ + 6𝑥 + 5﷯.𝑑𝑥= ﷮﷮ 1﷮4﷯ 4𝑥 + 6﷯ + 1﷮2﷯﷮2 𝑥﷮2﷯ + 6𝑥 + 5﷯.𝑑𝑥﷯﷯ = ﷮﷮ 1﷮4﷯ 4𝑥 + 6﷯﷮2 𝑥﷮2﷯ + 6𝑥 + 5﷯+ ﷮﷮ 1﷮2﷯﷮2 𝑥﷮2﷯+6𝑥+5﷯.𝑑𝑥﷯﷯ = 1﷮4﷯ ﷮﷮ 4𝑥 + 6﷮2 𝑥﷮2﷯ + 6𝑥 + 5﷯𝑑𝑥+ 1﷮2﷯ ﷮﷮ 1﷮2 𝑥﷮2﷯ + 6𝑥 + 5﷯.𝑑𝑥﷯﷯ Taking I1 I1 = 1﷮4﷯ ﷮﷮ 4𝑥 + 6﷮2 𝑥﷮2﷯ + 6𝑥 + 5﷯𝑑𝑥﷯ Let t = 2 𝑥﷮2﷯ + 6𝑥 + 5 Differentiating both sides w.r.t.𝑥 4𝑥 +6= 𝑑𝑡﷮𝑑𝑥﷯ 𝑑𝑥= 𝑑𝑡﷮4𝑥 + 6﷯ Now, I1 = 1﷮4﷯ ﷮﷮ 4𝑥 + 6﷮2 𝑥﷮2﷯ + 6𝑥 + 5﷯.𝑑𝑥﷯ Putting the values of 2 𝑥﷮2﷯+6𝑥+5﷯ and 𝑑𝑥, we get I1 = 1﷮4﷯ ﷮﷮ 4𝑥 + 6﷮𝑡﷯. 𝑑𝑡﷮4𝑥 + 6﷯ ﷯ I1 = 1﷮4﷯ ﷮﷮ 1﷮𝑡﷯.𝑑𝑡 ﷯ I1 = 1﷮4﷯𝑙𝑜𝑔 𝑡﷯+𝐶1 I1 = 1﷮4﷯𝑙𝑜𝑔 2 𝑥﷮2﷯+6𝑥+5﷯+𝐶1 Now, taking I2 i.e. I2 = 1﷮2﷯ ﷮﷮ 1﷮2 𝑥﷮2﷯ + 6𝑥 + 5﷯.𝑑𝑥 ﷯ I2 = 1﷮2﷯ ﷮﷮ 1﷮2 𝑥﷮2﷯ + 6𝑥﷮2﷯ + 5﷮2﷯ ﷯﷯.𝑑𝑥 ﷯ I2 = 1﷮2.2﷯ ﷮﷮ 1﷮ 𝑥﷮2﷯ +3𝑥 + 5﷮2﷯﷯.𝑑𝑥 ﷯ I2 = 1﷮4﷯ ﷮﷮ 1﷮ 𝑥﷮2﷯ + 2 𝑥﷯ 3﷮2﷯﷯ + 5﷮2﷯﷯.𝑑𝑥 ﷯ I2 = 1﷮4﷯ ﷮﷮ 1﷮ 𝑥﷮2﷯ + 2 𝑥﷯ 3﷮2﷯﷯ + 3﷮2﷯﷯﷮2﷯ − 3﷮2﷯﷯﷮2﷯ + 5﷮2﷯﷯.𝑑𝑥 ﷯ I2 = 1﷮4﷯ ﷮﷮ 1﷮ 𝑥 + 3﷮2﷯﷯﷮2﷯ − 3﷮2﷯﷯﷮2﷯ + 5﷮2﷯﷯𝑑𝑥 ﷯ I2 = 1﷮4﷯ ﷮﷮ 1﷮ 𝑥 + 3﷮2﷯﷯﷮2﷯ − 9﷮4﷯ + 5﷮2﷯﷯.𝑑𝑥 ﷯ I2 = 1﷮4﷯ ﷮﷮ 1﷮ 𝑥 + 3﷮2﷯﷯﷮2﷯+ −9 + 10﷮4﷯ ﷯.𝑑𝑥 ﷯ I2 = 1﷮4﷯ ﷮﷮ 1﷮ 𝑥 + 3﷮2﷯﷯﷮2﷯+ 1﷮4﷯ ﷯.𝑑𝑥 ﷯ I2 = 1﷮4﷯ ﷮﷮ 1﷮ 𝑥 + 3﷮2﷯﷯﷮2﷯+ 1﷮2﷯﷯﷮2﷯ ﷯.𝑑𝑥 ﷯ = 1﷮4﷯ 1﷮ 1﷮2﷯﷯ tan﷮−1﷯﷮ 𝑥 + 3﷮2﷯﷮ 1﷮2﷯﷯+𝐶2﷯﷯ = 1﷮4﷯ 2 tan﷮−1﷯﷮ 2𝑥 + 3﷮2﷯﷮ 1﷮2﷯﷯+𝐶2﷯﷯ = 1﷮4﷯ 2 tan﷮−1﷯ 2𝑥+3﷯﷮+𝐶2﷯﷯ = 2﷮4﷯ tan﷮−1﷯﷮ 2𝑥+3﷯+ 𝐶2﷮4﷯﷯ = 1﷮2﷯ tan﷮−1﷯﷮ 2𝑥+3﷯+𝐶3﷯ Now, putting the value of I1 and I2 in eq. (1) ∴ ﷮﷮ 𝑥+2﷮2 𝑥﷮2﷯ + 6𝑥 + 5﷯.𝑑𝑥﷯ = 1﷮4﷯𝑙𝑜𝑔 2 𝑥﷮2﷯+6𝑥+5﷯+𝐶1+ 1﷮2﷯ tan﷮−1﷯﷮ 2𝑥+3﷯+﷯𝐶3 = 𝟏﷮𝟒﷯𝒍𝒐𝒈 𝟐 𝒙﷮𝟐﷯+𝟔𝒙+𝟓﷯+ 𝟏﷮𝟐﷯ 𝒕𝒂𝒏﷮−𝟏﷯﷮ 𝟐𝒙+𝟑﷯+﷯𝑪

  1. Chapter 7 Class 12 Integrals
  2. Concept wise
Chapter 7 Class 12 Integrals
Concept wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo